
Chapter 9

Online Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn



Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Online Computations

• Sometimes, an algorithm has to start processing the input 
before the complete input is known

• For example, when storing data in a data structure, the 
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output 
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole 
input before computing the output.

• Some problems are inherently online
– Especially when real-time requests have to be processed over a 

significant period of time



Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Competitive Ratio

• Let’s again consider optimization problems
– For simplicity, assume, we have a minimization problem

Optimal offline solution 𝐎𝐏𝐓(𝑰):

• Best objective value that an offline algorithm can achieve for a 
given input sequence 𝐼

Online solution 𝐀𝐋𝐆(𝑰):

• Objective value achieved by an online algorithm ALG on 𝐼

Competitive Ratio: An algorithm has competitive ratio 𝑐 ≥ 1 if

𝐀𝐋𝐆 𝑰 ≤ 𝒄 ⋅ 𝐎𝐏𝐓 𝑰 + 𝜶.

• If 𝛼 = 0, we say that ALG is strictly 𝑐-competitive.



Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Paging Algorithm

Assume a simple memory hierarchy:

If a memory page has to be accessed:

• Page in fast memory (hit): take page from there

• Page not in fast memory (miss): leads to a page fault

• Page fault: the page is loaded into the fast memory and some 
page has to be evicted from the fast memory

• Paging algorithm: decides which page to evict

• Classical online problem: we don’t know the future accesses

⋯

fast memory of size 𝒌

slow memory



Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Paging Strategies

Least Recently Used (LRU):

• Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):

• Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

• Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

• Replace the page that has been used the least

Longest Forward Distance (LFD):

• Replace the page whose next request is latest (in the future)

• LFD is not an online strategy!



Algorithm Theory, WS 2019/20 Fabian Kuhn 6

LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase 𝑖
interval (for 𝑖 = 1,… , 𝑝 − 1, where 𝑝 is the number of phases).

Corollary: The number of page faults of an optimal offline 
algorithm is at least 𝑝 − 1, where 𝑝 is the number of phases

Theorem: The LRU and the FIFO algorithms both have a 
competitive ratio of at most 𝑘.

Proof:

• We will show that both have at most 𝑘 page faults per phase

• We then have (for every input 𝐼):

LRU 𝐼 , FIFO 𝐼 ≤ 𝑘 ⋅ 𝑝 ≤ 𝑘 ⋅ OPT 𝐼 + 𝑘



Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Lower Bound

Theorem: Even if the slow memory contains only 𝑘 + 1 pages, 
any deterministic algorithm has competitive ratio at least 𝑘.

Proof:

• Consider some given deterministic algorithm ALG

• Because ALG is deterministic, the content of the fast memory 
after the first 𝑖 requests is determined by the first 𝑖 requests.

• Construct a request sequence inductively as follows:
– Assume some initial slow memory content

– The 𝑖 + 1 st request is for the page which is not in fast memory after 
the first 𝑖 requests (throughout we only use 𝑘 + 1 different pages)

• There is a page fault for every request

• OPT has a page fault at most every 𝑘 requests
– There is always a page that is not required for the next 𝑘 − 1 requests



Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Randomized Algorithms

• We have seen that deterministic paging algorithms cannot be 
better than 𝑘-competitive

• Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has 
competitive ratio 𝑐 ≥ 1 if for all inputs 𝐼,

𝔼 𝐀𝐋𝐆 𝑰 ≤ 𝒄 ⋅ 𝐎𝐏𝐓 𝑰 + 𝜶.

• If 𝛼 ≤ 0, we say that ALG is strictly 𝑐-competitive.



Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Adversaries

• For randomized algorithm, we need to distinguish between 
different kinds of adversaries (providing the input)

Oblivious Adversary:

• Has to determine the complete input sequence before the 
algorithm starts
– The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

• The input sequence is constructed during the execution

• When determining the next input, the adversary knows how the 
algorithm reacted to the previous inputs

• Input sequence depends on the random behavior of the alg.

• Sometimes, two adaptive adversaries are distinguished
– offline, online : different way of measuring the adversary cost



Algorithm Theory, WS 2019/20 Fabian Kuhn 10

The Randomized Marking Algorithm

• Every entry in fast memory has a marked flag

• Initially, all entries are unmarked.

• If a page in fast memory is accessed, it gets marked

• When a page fault occurs:

– If all 𝑘 pages in fast memory are marked,
all marked bits are set to 0

– The page to be evicted is chosen uniformly at random 
among the unmarked pages

– The marked bit of the new page in fast memory is set to 1



Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Phase Partition

We partition a given request sequence 𝜎 into phases as follows:

• Phase 𝟎: empty sequence

• Phase 𝒊 : maximal sequence that immediately follows phase
𝑖 − 1 and contains at most 𝑘 distinct page requests

Example sequence (𝒌 = 𝟒):

2, 5, 12, 5, 4, 2, 10, 8, 3, 6, 2, 2, 6, 6, 8, 3, 2, 6, 9, 10, 6, 3, 10, 2, 1, 3, 5



Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Example

Input Sequence (k=6):

2, 5, 3, 3, 6, 8, 2, 9, 5, 7, 1, 2, 5, 2, 3, 7, 4, 8, 1, 2, 7, 5,3,6,9,6,10,4,1,2…

Fast Memory:

Observations:

• At the end of a phase, the fast memory entries are exactly the 𝑘
pages of that phase

• At the beginning of a phase, all entries get unmarked

• #page faults depends on #new pages in a phase

phase 𝟏 phase 𝟐 phase 𝟑 phase 𝟒

𝟐 𝟓 𝟑 𝟔 𝟖 𝟗𝟐 𝟓 𝟑 𝟔 𝟖 𝟗𝟕 𝟏𝟐 𝟓 𝟑𝟒𝟕 𝟏𝟐 𝟓 𝟑𝟒𝟖 𝟏𝟐 𝟕𝟓 𝟑𝟓 𝟏𝟐 𝟑𝟖 𝟕𝟔 𝟗𝟏𝟎 𝟒𝟏 𝟐



Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Page Faults per Phase

Consider a fixed phase 𝒊:

• Assume that of the 𝑘 pages of phase 𝑖, 𝑚𝑖 are new and 𝑘 − 𝑚𝑖

are old (i.e., they already appear in phase 𝑖 − 1)

• All 𝑚𝑖 new pages lead to page faults (when they are requested 
for the first time)

• When requested for the first time, an old page leads to a page 
fault, if the page was evicted in one of the previous page faults

• We need to count the number of page faults for old pages



Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Page Faults per Phase

Phase 𝒊, 𝒋𝐭𝐡 old page that is requested (for the first time):

• There is a page fault if the page has been evicted

• There have been at most 𝑚𝑖 + 𝑗 − 1 distinct requests before

• The old places of the 𝑗 − 1 first old pages are occupied

• The other ≤ 𝑚𝑖 pages are at uniformly random places among the 
remaining 𝑘 − 𝑗 − 1 places (oblivious adv.)

• Probability that the old place of the 𝑗th old page is taken:

≤
𝑚𝑖

𝑘 − (𝑗 − 1)



Algorithm Theory, WS 2019/20 Fabian Kuhn 15

Page Faults per Phase

Phase 𝒊 > 𝟏, 𝒋𝐭𝐡 old page that is requested (for the first time):

• Probability that there is a page fault:

≤
𝑚𝑖

𝑘 − (𝑗 − 1)

Number of page faults for old pages in phase 𝒊: 𝑭𝒊

𝔼 𝐹𝑖 = ෍

𝑗=1

𝑘−𝑚𝑖

ℙ 𝑗th old page incurs page fault

≤ ෍

𝑗=1

𝑘−𝑚𝑖
𝑚𝑖

𝑘 − 𝑗 − 1
= 𝑚𝑖 ⋅ ෍

ℓ=𝑚𝑖+1

𝑘
1

ℓ

= 𝑚𝑖 ⋅ 𝐻 𝑘 − 𝐻 𝑚𝑖 ≤ 𝑚𝑖 ⋅ 𝐻 𝑘 − 1



Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking 
algorithm has a competitive ratio of at most 2𝐻 𝑘 ≤ 2 ln 𝑘 + 2.

Proof:

• Assume that there are 𝑝 phases

• #page faults of rand. marking algorithm in phase 𝑖: 𝐹𝑖 +𝑚𝑖

• We have seen that
𝔼 𝐹𝑖 ≤ 𝑚𝑖 ⋅ 𝐻 𝑘 − 1 ≤ 𝑚𝑖 ⋅ ln 𝑘

• Let 𝐹 be the total number of page faults of the algorithm:

𝔼 𝐹 ≤෍

𝑖=1

𝑝

𝔼 𝐹𝑖 +𝑚𝑖 ≤ 𝐻 𝑘 ⋅෍

𝑖=1

𝑝

𝑚𝑖



Algorithm Theory, WS 2019/20 Fabian Kuhn 17

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking 
algorithm has a competitive ratio of at most 2𝐻 𝑘 ≤ 2 ln 𝑘 + 2.

Proof:

• Let 𝐹𝑖
∗ be the number of page faults in phase 𝑖 in an opt. exec.

• Phase 1: 𝑚1 pages have to be replaced  𝐹1
∗ ≥ 𝑚1

• Phase 𝑖 > 1:

– Number of distinct page requests in phases 𝑖 − 1 and 𝑖: 𝒌 +𝒎𝒊

– Therefore, 𝑭𝒊−𝟏
∗ + 𝑭𝒊

∗ ≥ 𝒎𝒊

• Total number of page requests 𝐹∗:

𝐹∗ =෍

𝑖=1

𝑝

𝐹𝑖
∗ ≥

1

2
⋅ 𝐹1

∗ +෍

𝑖=2

𝑝

𝐹𝑖−1
∗ + 𝐹𝑖

∗ ≥
1

2
⋅෍

𝑖=1

𝑝

𝑚𝑖



Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking 
algorithm has a competitive ratio of at most 2𝐻 𝑘 ≤ 2 ln 𝑘 + 2.

Proof:

• Randomized marking algorithm:

𝔼 𝐹 ≤ 𝐻 𝑘 ⋅෍

𝑖=1

𝑝

𝑚𝑖

• Optimal algorithm:

𝐹∗ ≥
1

2
⋅෍

𝑖=1

𝑝

𝑚𝑖

Remark: It can be shown that no randomized algorithm has a 
competitive ratio better than 𝐻(𝑘) (against an obl. adversary)



Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Randomized Lower Bound

Yao’s Principle (more precisely Yao’s Minimax Principle):

exp. cost of best randomized alg. for worst-case input

≤
exp. cost of best deterministic alg. for a given random input distr.

Proving a lower bound using Yao’s principle:

• Design a random input distribution

• Show that every deterministic algorithm has a bad expected 
competitive ratio if the input is chosen at random according to 
this distribution

• Yao’s principle then implies that every randomized algorithm is 
at least equally bad for worst-case input
– worst-case fixed input: holds even for oblivious adversary



Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Randomized Paging Lower Bound

Input Distribution

• There are 𝑘 + 1 different pages in the slow memory

• In each step, a uniformly random page is requested

Deterministic Online Algorithms

• Consider some request 𝑖
– Current state of the fast memory depends on requests 𝑖 − 1 and on 

the algorithm, assume that page 𝑝 is not in fast memory

– ℙ page fault = ℙ request for page 𝑝 =
1

𝑘+1

• Expected #page faults after 𝑛 requests:
𝑛

𝑘 + 1



Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Randomized Paging Lower Bound

Best Offline Algorithm: Longest Forward Distance

• After each page fault, optimal offline algorithm loads the page 
that will not be used for the longest possible time

• After a page fault, all 𝑘 + 1 pages are requested at least once 
before the next page fault

time between two page faults = time to request each page at least once −𝟏

Claim: If 𝑇 = time to request each page once, then
𝔼 𝑻 = 𝒌 + 𝟏 ⋅ 𝑯 𝒌 + 𝟏

• For 𝑖 ∈ {0,… , 𝑘 + 1}: 𝑇𝑖 time to request 𝑖𝑡ℎ page after 
requesting 𝑖 − 1 different pages

• Probability for req. 𝑖𝑡ℎ page after requesting 𝑖 − 1 diff. pages:

𝑝𝑖 =
𝑘 + 1 − 𝑖

𝑘 + 1



Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Randomized Paging Lower Bound

Claim: If 𝑇 = time to request each page once, then
𝔼 𝑻 = 𝒌 + 𝟏 ⋅ 𝑯 𝒌 + 𝟏

• For 𝑖 ∈ {0,… , 𝑘 + 1}: 𝑇𝑖 time to request 𝑖𝑡ℎ page after 
requesting 𝑖 − 1 different pages

• Prob. for req. 𝑖𝑡ℎ page after req. 𝑖 − 1 diff. pages: 𝑝𝑖 =
𝑘+1−𝑖

𝑘+1



Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Randomized Paging Lower Bound

Claim: For 𝑘 + 1 pages and 𝑛 uniformly random requests, the 
optimal expected number of page faults is at most

𝑛

𝑘 + 1 ⋅ 𝐻(𝑘)
− 1

• Average time ത𝑇 between page faults

𝔼 ത𝑇 = 𝔼 𝑇 − 1 = 𝑘 + 1 𝐻 𝑘 + 1 − 1

• Number of page faults 𝑋 = Τ𝑛 ത𝑇 :

𝔼 𝑋 = 𝔼
𝑛

ത𝑇
≥ 𝔼

𝑛

ത𝑇
− 1 ≥

𝑛

𝔼 ത𝑇
− 1



Algorithm Theory, WS 2019/20 Fabian Kuhn 24

Randomized Paging Lower Bound

Theorem: Every randomized paging algorithm has competitive 
ratio at least 𝐻(𝑘) even for an oblivious adversary.

1. Assume we 𝑘 + 1 pages and uniformly random page requests

2. Expected number of page faults of best deterministic algorithm

=
𝑛

𝑘 + 1

3. Expected number of page faults of optimal algorithm

≥
𝑛

𝑘 + 1 ⋅ 𝐻 𝑘
− 1

4. Yao’s principle now proves the theorem
– not really necessary here, step 2 also works directly for randomized alg.



Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Self-Adjusting Lists

• Linked lists are often inefficient
– Cost of accessing an item at position 𝑖 is linear in 𝑖

• But, linked lists are extremely simple
– And therefore nevertheless interesting

• Can we at least improve the behavior of linked lists? 

• In practical applications, not all items are accessed equally often 
and not equally distributed over time
– The same items might be used several times over a short period of time

• Idea: rearrange list after accesses to optimize the structure for 
future accesses

• Problem: We don’t know the future accesses
– The list rearrangement problems is an online problem!



Algorithm Theory, WS 2019/20 Fabian Kuhn 26

Model

• Only find operations (i.e., access some item)
– Let’s ignore insert and delete operations

– Results can be generalized to cover insertions and deletions

Cost Model:

• Accessing item at position 𝑖 costs 𝑖

• The only operation allowed for rearranging the list is swapping 
two adjacent list items

• Swapping any two adjacent items costs 1



Algorithm Theory, WS 2019/20 Fabian Kuhn 27

Rearranging The List

Frequency Count (FC):

• For each item keep a count of how many times it was accessed

• Keep items in non-increasing order of these counts

• After accessing an item, increase its count and move it forward 
past items with smaller count

Move-To-Front (MTF):

• Whenever an item is accessed, move it all the way to the front

Transpose (TR):

• After accessing an item, swap it with its predecessor



Algorithm Theory, WS 2019/20 Fabian Kuhn 28

Cost

Cost when accessing item at position 𝒊:

• Frequency Count (FC): between 𝑖 and 2𝑖 − 1

• Move-To-Front (MTF): 2𝑖 − 1

• Transpose (TR): 𝑖 + 1

Random Accesses:

• If each item 𝑥 has an access probability 𝑝𝑥 and the items are 
accessed independently at random using these probabilities, FC 
and TR are asymptotically optimal

Real access patterns are not random, TR usually behaves badly and 
the much simpler MTF often beats FC



Algorithm Theory, WS 2019/20 Fabian Kuhn 29

Move-To-Front

• We will see that MTF is competitive

• To analyze MTF we need competitive analysis and amortized 
analysis

Operation 𝒌:

• Assume, the operation accesses item 𝑥 at position 𝑖

• 𝒄𝒌: actual cost of the MTF algorithm
𝒄𝒌 = 𝟐𝒊 − 𝟏

• 𝒂𝒌: amortized cost of the MTF algorithm

• 𝒄𝒌
∗ : actual cost of an optimal offline strategy
– Let’s call the optimal offline strategy OPT


