
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger

Algorithms Theory

Sample Solution Exercise Sheet 1

Exercise 1: Smallest Triangle (11 Points)

In the lecture, we discussed an algorithm to determine the distance between the closest pair of points.
We now want to solve the following similar problem: Given a set of points S in the plane, determine
the size of the smallest triangle. That is, for three pairwise distinct points a, b, c we define d(a, b, c) :=
d(a, b) + d(a, c) + d(b, c) (where d(·, ·) describes the Euclidean distance between two points) and we
want to compute min{d(a, b, c) | a, b, c ∈ S pairwise distinct}.
Describe how to adjust the algorithm from the lecture to solve the given problem. Does the runtime
change and if yes, how?

Sample Solution

First sort all points by x-coordinate in O(n log n) (needs to be done only once, not in each recursion
step). The algorithm works as follows:

• If |S| = 3, i.e., S = {a, b, c} for some distinct points a, b, c, return d(a, b, c) (if |S| < 3, return
∞).

• Divide S into two equal sized sets S` and Sr.

• Recursively compute ∆` and ∆r as the size of the smallest triangle in S` and Sr and recursively
sort S` and Sr according to y-coordinates.

• Combine: Merge to sort S according to y-coordinates (as in the mergesort algorithm). Return
min{∆`,∆r,∆`r} with ∆`r = min{d(x, y, z) | one point in S`, one point in Sr}.

We explain the combine step: Let ∆ := min{∆`,∆r}. Let x0 be the median of all x-coordinates. We
only need to consider so-called center points with an x-coordinate that is within distance ≤ ∆/2 of x0.
We go through these points in order of increasing y-coordinates. For each point s, we need to check
the sizes of the triangles that s forms with any two other center points (where at least one is on the
other side) which have a y-coordinate that is at most ∆/2 larger than that of s. All these points lie in
a rectangle R of size ∆×∆/2. We can partition R into 18 squares of size ∆/6, either lying full on the
left or full on the right side. Within such a square, each two points have distance < ∆/3. Therefore, at
most two points can lie in the same square (because three points in one square would form a triangle
of size < ∆). We have to check the triangles that s builds with any pair of points in R∩ Sr which are
≤ 182−18 many and the triangles that s builds with one point in R∩S` and one point in R∩Sr which
are ≤ 182 many. So overall, we have to check at most 630 = O(1) triangles for s. It follows that the
combine step takes O(n). The runtime analysis is therefore the same as for the closest pair of points.

Exercise 2: Landau-Notation (3+3+3 Points)

Prove or disprove the following statements

(a) 4n3 + 8n2 + 5n ∈ O(2n3).

(b) 2n ∈ O(10
√
n).

(c) log2(2
n · n3) ∈ Θ(5n)

Sample Solution

(a) True. For all n we have n3 ≥ n2 ≥ n and thus 4n3 + 8n2 + 5n ≤ 17n3 ≤ 9 · 2n3 (i.e. choose n = 1
and c = 9 in the definition of the O-notation).

(b) False. Let f(n) = 2n and g(n) = 10
√
n. Let c > 0. We have f(n) ≤ c · g(n) ⇔ n ≤ 25c2. So

for any c > 0 and any n0, there is an n ≥ n0 with f(n) > c · g(n) (for given c and n0 choose
n = max{n0, d25c2e+ 1}).

(c) True. We have log2(2
n · n3) = log2(2

n) + log2(n
3) = n+ 3 log2(n). As log2(n) ≤ n for all n ≥ 1 we

have n + 3 log2(n) ≤ 4n ≤ 5n (i.e. choose n = 1 and c = 1 in the definition of the O-notation).

