University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

P. Bamberger

UNI
FREIBURG

Algorithms Theory

Sample Solution Exercise Sheet 1

Exercise 1: Smallest Triangle (11 Points)

In the lecture, we discussed an algorithm to determine the distance between the closest pair of points.
We now want to solve the following similar problem: Given a set of points .S in the plane, determine
the size of the smallest triangle. That is, for three pairwise distinct points a, b, ¢ we define d(a, b, c) :=
d(a,b) + d(a,c) + d(b,c) (where d(-,-) describes the Euclidean distance between two points) and we
want to compute min{d(a,b,c) | a,b,c € S pairwise distinct}.

Describe how to adjust the algorithm from the lecture to solve the given problem. Does the runtime
change and if yes, how?

Sample Solution

First sort all points by z-coordinate in O(nlogn) (needs to be done only once, not in each recursion
step). The algorithm works as follows:

o If |S| =3, ie., S = {a,b,c} for some distinct points a,b, ¢, return d(a,b,c) (if |S| < 3, return
00).

e Divide S into two equal sized sets Sy and S,.

e Recursively compute Ay and A, as the size of the smallest triangle in Sy and S, and recursively
sort Sy and S, according to y-coordinates.

e Combine: Merge to sort S according to y-coordinates (as in the mergesort algorithm). Return
min{Ay, A, Ay} with Ay = min{d(x,y, z) | one point in Sy, one point in S, }.

We explain the combine step: Let A := min{Ay, A, }. Let zp be the median of all z-coordinates. We
only need to consider so-called center points with an z-coordinate that is within distance < A/2 of z.
We go through these points in order of increasing y-coordinates. For each point s, we need to check
the sizes of the triangles that s forms with any two other center points (where at least one is on the
other side) which have a y-coordinate that is at most A/2 larger than that of s. All these points lie in
a rectangle R of size A x A/2. We can partition R into 18 squares of size A/6, either lying full on the
left or full on the right side. Within such a square, each two points have distance < A/3. Therefore, at
most two points can lie in the same square (because three points in one square would form a triangle
of size < A). We have to check the triangles that s builds with any pair of points in RN .S, which are
< 182 — 18 many and the triangles that s builds with one point in RN .S, and one point in RN S, which
are < 182 many. So overall, we have to check at most 630 = O(1) triangles for s. It follows that the
combine step takes O(n). The runtime analysis is therefore the same as for the closest pair of points.

Exercise 2: Landau-Notation (3+3+3 Points)
Prove or disprove the following statements

(a) 4n3 4+ 8n? + 5n € O(2n3).

(b) 2n € O(10y/n).

(c) logy(2" - n3) € ©(5n)

Sample Solution

(a) True. For all n we have n3 > n? > n and thus 4n3 + 8n? +5n < 17n3 < 9. 2n3 (i.e. choose n =1
and ¢ =9 in the definition of the O-notation).

(b) False. Let f(n) = 2n and g(n) = 10y/n. Let ¢ > 0. We have f(n) < c-g(n) & n < 25¢% So
for any ¢ > 0 and any ng, there is an n > ng with f(n) > ¢ - g(n) (for given ¢ and ngy choose
n = max{nog, [25¢%] + 1}).

(c) True. We have logy (2" - n3) = logy(2") + logy(n3) = n + 3logy(n). As logy(n) < n for all n > 1 we
have n + 3logy(n) < 4n < 5n (i.e. choose n =1 and ¢ =1 in the definition of the O-notation).

