Algorithms Theory Sample Solution Exercise Sheet 1

Exercise 1: Smallest Triangle

In the lecture, we discussed an algorithm to determine the distance between the closest pair of points. We now want to solve the following similar problem: Given a set of points S in the plane, determine the size of the smallest triangle. That is, for three pairwise distinct points a, b, c we define $d(a, b, c):=$ $d(a, b)+d(a, c)+d(b, c)$ (where $d(\cdot, \cdot)$ describes the Euclidean distance between two points) and we want to compute $\min \{d(a, b, c) \mid a, b, c \in S$ pairwise distinct $\}$.
Describe how to adjust the algorithm from the lecture to solve the given problem. Does the runtime change and if yes, how?

Sample Solution

First sort all points by x-coordinate in $O(n \log n)$ (needs to be done only once, not in each recursion step). The algorithm works as follows:

- If $|S|=3$, i.e., $S=\{a, b, c\}$ for some distinct points a, b, c, return $d(a, b, c)$ (if $|S|<3$, return $\infty)$.
- Divide S into two equal sized sets S_{ℓ} and S_{r}.
- Recursively compute Δ_{ℓ} and Δ_{r} as the size of the smallest triangle in S_{ℓ} and S_{r} and recursively sort S_{ℓ} and S_{r} according to y-coordinates.
- Combine: Merge to sort S according to y-coordinates (as in the mergesort algorithm). Return $\min \left\{\Delta_{\ell}, \Delta_{r}, \Delta_{\ell r}\right\}$ with $\Delta_{\ell r}=\min \left\{d(x, y, z) \mid\right.$ one point in S_{ℓ}, one point in $\left.S_{r}\right\}$.

We explain the combine step: Let $\Delta:=\min \left\{\Delta_{\ell}, \Delta_{r}\right\}$. Let x_{0} be the median of all x-coordinates. We only need to consider so-called center points with an x-coordinate that is within distance $\leq \Delta / 2$ of x_{0}. We go through these points in order of increasing y-coordinates. For each point s, we need to check the sizes of the triangles that s forms with any two other center points (where at least one is on the other side) which have a y-coordinate that is at most $\Delta / 2$ larger than that of s. All these points lie in a rectangle R of size $\Delta \times \Delta / 2$. We can partition R into 18 squares of size $\Delta / 6$, either lying full on the left or full on the right side. Within such a square, each two points have distance $<\Delta / 3$. Therefore, at most two points can lie in the same square (because three points in one square would form a triangle of size $<\Delta$). We have to check the triangles that s builds with any pair of points in $R \cap S_{r}$ which are $\leq 18^{2}-18$ many and the triangles that s builds with one point in $R \cap S_{\ell}$ and one point in $R \cap S_{r}$ which are $\leq 18^{2}$ many. So overall, we have to check at most $630=O(1)$ triangles for s. It follows that the combine step takes $O(n)$. The runtime analysis is therefore the same as for the closest pair of points.

Exercise 2: Landau-Notation

Prove or disprove the following statements
(a) $4 n^{3}+8 n^{2}+5 n \in O\left(2 n^{3}\right)$.
(b) $2 n \in O(10 \sqrt{n})$.
(c) $\log _{2}\left(2^{n} \cdot n^{3}\right) \in \Theta(5 n)$

Sample Solution

(a) True. For all n we have $n^{3} \geq n^{2} \geq n$ and thus $4 n^{3}+8 n^{2}+5 n \leq 17 n^{3} \leq 9 \cdot 2 n^{3}$ (i.e. choose $n=1$ and $c=9$ in the definition of the O-notation).
(b) False. Let $f(n)=2 n$ and $g(n)=10 \sqrt{n}$. Let $c>0$. We have $f(n) \leq c \cdot g(n) \Leftrightarrow n \leq 25 c^{2}$. So for any $c>0$ and any n_{0}, there is an $n \geq n_{0}$ with $f(n)>c \cdot g(n)$ (for given c and n_{0} choose $\left.n=\max \left\{n_{0},\left\lceil 25 c^{2}\right\rceil+1\right\}\right)$.
(c) True. We have $\log _{2}\left(2^{n} \cdot n^{3}\right)=\log _{2}\left(2^{n}\right)+\log _{2}\left(n^{3}\right)=n+3 \log _{2}(n)$. As $\log _{2}(n) \leq n$ for all $n \geq 1$ we have $n+3 \log _{2}(n) \leq 4 n \leq 5 n$ (i.e. choose $n=1$ and $c=1$ in the definition of the O-notation).

