
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger

Algorithms Theory

Sample Solution Exercise Sheet 2

Exercise 1: Convolution (11 Points)

Compute the convolution of the vectors a = (5, 8,−2, 3) and b = (−9, 4,−1) using the algorithm for
polynomial multiplication from the lecture. Document all computation steps for evaluation, point-wise
multiplication and interpolation.

Sample Solution

Let pa(x) = 3x3 − 2x2 + 8x + 5 and pb(x) = 0x3 − x2 + 4x− 9. We want to compute the coefficients
c0, . . . , c6 of the polynomial pa(x) · pb(x).

Evaluation: pa(x) · pb(x) has maximum degree 5, i.e., is defined by 6 point-value pairs. We evaluate
the polynomials at 8 points (the next power of 2), namely at the 8th roots of unity
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using the FFT algorithm. For pa(x) we obtain the following recursion tree

pa(x) = 3x3 − 2x2 + 8x + 5

pa0(x) = −2x + 5

pa00(x) = 5 pa01(x) = −2

pa1(x) = 3x + 8

pa10(x) = 8 pa11(x) = 3

We proceed as follows: First we evaluate the polynomials on the lowest level for all x ∈ X4 = {1,−1}
(which is already done as these polynomials are constant), then we evaluate pa0(x) and pa1(x) for all x ∈
X2 = {1, i,−1,−i} using the combine rules pa0(x) = pa00(x

2)+x·pa01(x2) and pa1(x) = pa10(x
2)+x·pa11(x2)

which yields

• pa0(1) = 3

• pa0(i) = 5− 2i

• pa0(−1) = 7

• pa0(−i) = 5 + 2i

• pa1(1) = 11



• pa1(i) = 8 + 3i

• pa1(−1) = −5

• pa1(−i) = 8− 3i

and finally we compute pa(x) for all x ∈ X using pa(x) = pa0(x2) + x · pa1(x2)
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The same procedure done for pb(x) yields
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Point-wise multiplication: We obtain the pairs (ω0
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7
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Interpolation: Let q(x) = y0 + y1x + · · ·+ y7x
7 with yi as above. We obtain

(c0, . . . , c7) =
1

n

(
q(ω0

8), q(ω7
8), q(ω6

8) . . . , q(ω1
8)
)

The computation of q(ωi
8) can be done again with the FFT algorithm. We obtain

(c0, . . . , c7) = (−45,−52, 45,−43, 14,−3)



Exercise 2: Scheduling (11 Points)

Given n jobs of lengths t1 . . . , tn with one deadline d ≥ 0, we want to schedule these jobs such that
the average lateness is minimized. That is, for each job i we want to find a start and finishing time
0 ≤ s(i) ≤ f(i) with f(i) − s(i) = ti such that the intervals [s(i), f(i)] are pairwise non-overlapping
and the average over all L(i) = max{0, f(i) − d} is minimal (overlapping of start- and endpoints is
allowed).

Describe a greedy algorithm for this problem and prove that it computes an optimal solution.

Sample Solution

We schedule the jobs by length, starting with the shortest and ending with the longest (and of course
do not leave any space between two jobs). This minimizes the sum of all latenesses (and hence the
average lateness). We proof it with an exchange argument. Let O be an optimal solution. We transfer
O to a greedy solution without increasing the total lateness (if the job lengths are not pairwise distinct,
there are different greedy solutions). To ease presentation, assume that each job is represented by an
integer such that O = (1, . . . , n). If O is not a greedy solution, there must be jobs i and i + 1 with
ti > ti+1. We exchange jobs i and i + 1 and compare the old and new finishing times of all jobs:
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For the latenesses it follows Lnew(i) = Lold(i + 1) and Lnew(i + 1) ≤ Lold(i). The finishing time and
thus the lateness of all other jobs does not change. We obtain
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So we have seen that exchanging jobs i and i + 1 did not increase the sum of all latenesses and thus
the average lateness did not increase. We proceed this way until the jobs are sorted by length, i.e., we
obtain a greedy solution. It follows inductively that the average lateness of this solution is not larger
than the one of O and therefore the greedy solution is optimal.

Exercise 3: Matroids (8 Points)

We are given a directed weighted graph G = (V,E), where w : E → R+ defines weights of the edges.
Consider also a function b : V → N that defines some indegree bound for each node. We would like
to find a subset E′ ⊆ E of maximum total weight such that every node u ∈ V has indegree at most
b(u) in the graph G′ = (V,E′). Show that the set of feasible solutions form a matroid and thus, this
problem can be solved by using the greedy algorithm for matroids.

Sample Solution

Let I := {E′ ⊆ E | deginE′(v) ≤ b(v)} where deginE′(v) denotes the indegree of v in (V,E′). We show
that (E, I) is a matroid.



• Empty set is independent: ∅ ∈ I, because degin∅ (v) = 0 ≤ b(v) for all v ∈ V .

• Hereditary property: Let A′ ⊆ A ∈ I. It follows deginA′(v) ≤ deginA (v) ≤ b(v) for all v ∈ V and
hence A′ ∈ I.

• Augmentation/Independent set exchange property: Let A,B ∈ I with |A| > |B|. Then there
must be a node v ∈ V with deginB (v) < deginA (v) ≤ b(v). Let e be an incoming edge of v with
e ∈ A \B. Let B′ := B ∪ {e}. It follows deginB′(v) = deginB (v) + 1 ≤ b(v) and hence B′ ∈ I.


