
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger

Algorithm Theory

Sample Solution Exercise Sheet 3

Exercise 1: Knapsack with Integer Values (11 Points)

Given n items 1, . . . , n with weights wi ∈ R and values vi ∈ N and a bag capacity W , we want to find
a subset S ⊆ {1, . . . , n} that maximizes

∑
i∈S vi under the restriction

∑
i∈S wi ≤W .

Give an efficient1 algorithm for this problem that uses the principle of dynamic programming.

Hint: Define a function that computes for a k ∈ {1, . . . , n} and an integer v the minimum weight of a
collection of items from {1, . . . , k} that has value v.

Sample Solution

Let minweight(k, v) = min{minweight(k − 1, v), wk + minweight(k − 1, v − vk)}
Base cases:

• minweight(k, 0) = 0

• minweight(0, v) =∞ for v > 0

• minweight(k, v) =∞ for v < 0

Remark: With this definition, minweight(k, v) equals the minimum weight of a collection of items
that has value = v (and is set to ∞ if there is no collection summing up to v). If one changes the
third base case to minweight(k, v) = 0 for v < 0, then minweight(k, v) equals the minimum weight
of a collection of items that has value ≥ v. With both definitions we can proceed as follows.

Let vsum :=
∑n

i=1 vi. Set up a table T of size (n× vsum) with T [i, j] = minweight(i, j). Computing a
single entry of the table takes O(1) using the recursive formula, so the overall time to compute T is
O(n · vsum). Let j′ = max{j | T [n, j] ≤W}. If all entries in row n are > W , we set j′ = 0.
It follows that j′ equals the value of an optimal solution. To obtain the solution (i.e., the collection
of items summing up to j′), one can trace back from entry (n, j′) through the table according to the
recursive formula where in each step we jump up one row. If we also jump left when going from row
i+ 1 to row i, we add item i.

Exercise 2: Dynamic Programming (10 Points)

Conisder the following functions fi : N→ N

f1(n) = n− 1

f2(n) =

{
n
2 if 2 divides n

n else

f3(n) =

{
n
3 if 3 divides n

n else

1under the assumption that the maximum value is polynomial in n



”m divides n” means there is a k ∈ N with k ·m = n.

For a given n ≥ 1, we want to find die minimal number of applications of the functions f1, f2, f3
needed to reach 1. Formally: Find the minimal k for which there are i1, . . . , ik ∈ {1, 2, 3} with
fi1(fi2(. . . (fik(n)) . . . ) = 1.

Devise an algorithm in pseudocode to solve the problem and analyze the runtime.

Sample Solution

memo = {}

Algorithm 1 steps to one(n)

1: if n in memo then
2: return memo[n]

3: if n == 1 then
4: s = 0
5: else
6: x = steps to one(n− 1)
7: if n | 2 then
8: y = steps to one(n/2)
9: else

10: y =∞
11: if n | 3 then
12: z = steps to one(n/3)
13: else
14: z =∞
15: s = 1 + min{x, y, z}
16: memo[n] = s
17: return s

Runtime analysis: By repeatedly calling steps to one(n− 1) in line 6 we go down the recursion tree
until reaching 1. When going the tree up, in each step there are at most three recursive calls of
steps to one and each of them is either a base case or takes a value from memo. Therefore, going
one level up in the tree takes O(1) and so the overall runtime is O(n).

The recursion tree looks as follows (the branches with fractional values only exist if the fraction is an
integer)

n

n− 1

n− 2

n− 3 n−2
2

n−2
3

n−1
2

n−1
3

n
2

n
3



Exercise 3: Amortized Analysis (9 Points)

Suppose a sequence of n operations are performed on an (unknown) data structure in which the i-th
operation costs i if i is an exact power of 2, and 1 otherwise.

Operation 1 2 3 4 5 6 7 8 9 . . . 15 16 17 . . .

Actual Cost 1 2 1 4 1 1 1 8 1 . . . 1 16 1 . . .

Tabelle 1: Operations and their actual costs

Use the potential function method to show that each operation has constant amortized cost.

Hint: The number of consecutive operations that are not an exact power of 2 and are performed
immediately before operation (i+ 1) is i− 2`(i) where `(i) := blog2 ic.

Sample Solution

Define φ(0) = 0 and φ(i) = 2(i − 2`(i)) for i ≥ 1. If ci is the actual cost of operation i, we define the
amortized cost of operation i as ai = ci + φ(i)− φ(i− 1). As φ(0) = 0 and φ(i) ≥ 0 for i ≥ 0, we have∑n

i=1 ai ≥
∑n

i=1 ci for all n > 0 (i.e., the definition of the amortized costs is ’feasible’).
For the first operation we get a1 = 1 + φ(1) − φ(0) = 1. If i > 1 is not a power of 2, we have
`(i) = `(i− 1) and hence ai = 3. If i = 2k for a k > 0, we have

ai = 2k + φ(i)− φ(i− 1) = 2k + 0− 2(2k − 1− 2k−1) = 2k − 2k+1 + 2 + 2k = 2


