## Algorithm Theory Sample Solution Exercise Sheet 3

## Exercise 1: Knapsack with Integer Values

Given $n$ items $1, \ldots, n$ with weights $w_{i} \in \mathbb{R}$ and values $v_{i} \in \mathbb{N}$ and a bag capacity $W$, we want to find a subset $S \subseteq\{1, \ldots, n\}$ that maximizes $\sum_{i \in S} v_{i}$ under the restriction $\sum_{i \in S} w_{i} \leq W$.
Give an efficient ${ }^{1}$ algorithm for this problem that uses the principle of dynamic programming.
Hint: Define a function that computes for $a k \in\{1, \ldots, n\}$ and an integer $v$ the minimum weight of a collection of items from $\{1, \ldots, k\}$ that has value $v$.

## Sample Solution

Let minweight $(k, v)=\min \left\{\operatorname{minweight}(k-1, v), w_{k}+\operatorname{minweight}\left(k-1, v-v_{k}\right)\right\}$
Base cases:

- $\operatorname{minweight}(k, 0)=0$
- minweight $(0, v)=\infty$ for $v>0$
- minweight $(k, v)=\infty$ for $v<0$

Remark: With this definition, minweight $(k, v)$ equals the minimum weight of a collection of items that has value $=v$ (and is set to $\infty$ if there is no collection summing up to $v$ ). If one changes the third base case to minweight $(k, v)=0$ for $v<0$, then minweight $(k, v)$ equals the minimum weight of a collection of items that has value $\geq v$. With both definitions we can proceed as follows.
Let $v_{\text {sum }}:=\sum_{i=1}^{n} v_{i}$. Set up a table $T$ of size $\left(n \times v_{\text {sum }}\right)$ with $T[i, j]=$ minweight $(i, j)$. Computing a single entry of the table takes $O(1)$ using the recursive formula, so the overall time to compute $T$ is $O\left(n \cdot v_{\text {sum }}\right)$. Let $j^{\prime}=\max \{j \mid T[n, j] \leq W\}$. If all entries in row $n$ are $>W$, we set $j^{\prime}=0$.
It follows that $j^{\prime}$ equals the value of an optimal solution. To obtain the solution (i.e., the collection of items summing up to $j^{\prime}$ ), one can trace back from entry ( $n, j^{\prime}$ ) through the table according to the recursive formula where in each step we jump up one row. If we also jump left when going from row $i+1$ to row $i$, we add item $i$.

## Exercise 2: Dynamic Programming

Conisder the following functions $f_{i}: \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{aligned}
& f_{1}(n)=n-1 \\
& f_{2}(n)= \begin{cases}\frac{n}{2} & \text { if } 2 \text { divides } n \\
n & \text { else }\end{cases} \\
& f_{3}(n)= \begin{cases}\frac{n}{3} & \text { if } 3 \text { divides } n \\
n & \text { else }\end{cases}
\end{aligned}
$$

[^0]$" m$ divides $n "$ means there is a $k \in \mathbb{N}$ with $k \cdot m=n$.
For a given $n \geq 1$, we want to find die minimal number of applications of the functions $f_{1}, f_{2}, f_{3}$ needed to reach 1. Formally: Find the minimal $k$ for which there are $i_{1}, \ldots, i_{k} \in\{1,2,3\}$ with $f_{i_{1}}\left(f_{i_{2}}\left(\ldots\left(f_{i_{k}}(n)\right) \ldots\right)=1\right.$.

Devise an algorithm in pseudocode to solve the problem and analyze the runtime.

## Sample Solution

```
memo ={}
```

```
Algorithm 1 steps_to_one( \(n\) )
    if \(n\) in memo then
        return memo \([n]\)
    if \(n==1\) then
        \(s=0\)
    else
        \(x=\) steps_to_one \((n-1)\)
        if \(n \mid 2\) then
            \(y=\) steps_to_one \((n / 2)\)
        else
            \(y=\infty\)
        if \(n \mid 3\) then
            \(z=\) steps_to_one \((n / 3)\)
        else
            \(z=\infty\)
        \(s=1+\min \{x, y, z\}\)
    \(\operatorname{memo}[n]=s\)
    return \(s\)
```

Runtime analysis: By repeatedly calling steps_to_one $(n-1)$ in line 6 we go down the recursion tree until reaching 1 . When going the tree up, in each step there are at most three recursive calls of steps_to_one and each of them is either a base case or takes a value from memo. Therefore, going one level up in the tree takes $O(1)$ and so the overall runtime is $O(n)$.

The recursion tree looks as follows (the branches with fractional values only exist if the fraction is an integer)


## Exercise 3: Amortized Analysis

Suppose a sequence of $n$ operations are performed on an (unknown) data structure in which the $i$-th operation costs $i$ if $i$ is an exact power of 2 , and 1 otherwise.

$$
\begin{array}{c|cccccccccccccc}
\text { Operation } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots & 15 & 16 & 17 & \ldots \\
\hline \text { Actual cost } & 1 & 2 & 1 & 4 & 1 & 1 & 1 & 8 & 1 & \ldots & 1 & 16 & 1 & \ldots
\end{array}
$$

Tabelle 1: Operations and their actual costs
Use the potential function method to show that each operation has constant amortized cost.

Hint: The number of consecutive operations that are not an exact power of 2 and are performed immediately before operation $(i+1)$ is $i-2^{\ell(i)}$ where $\ell(i):=\left\lfloor\log _{2} i\right\rfloor$.

## Sample Solution

Define $\phi(0)=0$ and $\phi(i)=2\left(i-2^{\ell(i)}\right)$ for $i \geq 1$. If $c_{i}$ is the actual cost of operation $i$, we define the amortized cost of operation $i$ as $a_{i}=c_{i}+\phi(i)-\phi(i-1)$. As $\phi(0)=0$ and $\phi(i) \geq 0$ for $i \geq 0$, we have $\sum_{i=1}^{n} a_{i} \geq \sum_{i=1}^{n} c_{i}$ for all $n>0$ (i.e., the definition of the amortized costs is 'feasible').
For the first operation we get $a_{1}=1+\phi(1)-\phi(0)=1$. If $i>1$ is not a power of 2 , we have $\ell(i)=\ell(i-1)$ and hence $a_{i}=3$. If $i=2^{k}$ for a $k>0$, we have

$$
a_{i}=2^{k}+\phi(i)-\phi(i-1)=2^{k}+0-2\left(2^{k}-1-2^{k-1}\right)=2^{k}-2^{k+1}+2+2^{k}=2
$$


[^0]:    ${ }^{1}$ under the assumption that the maximum value is polynomial in $n$

