Exercise 1: Fibonacci Heaps I

Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How does the given Fibonacci heap look after a decrease-key ($v, 2$) operation and how does it look after a subsequent delete-min operation?

Sample Solution

State after decrease-key ($v, 2$) operation:

State after delete-min:

Exercise 2: Fibonacci Heaps II

Show that in the worst case, the delete-min and the decrease-key operation on a Fibonacci heap can require time $\Omega(n)$.

Sample Solution

A costly delete-min:

First n elements are added to the heap, which causes them all to be roots in the root list. Deleting the minimum causes a consolidate call, which combines the remaining $n-1$ elements, which need at least $n-2$ merge operations, i.e., it costs $\Omega(n)$ time.
A costly decrease-key operation: (more difficult)
We construct a degenerated tree. Assume we already have a tree T_{n} in which the root r_{n} has two children r_{n-1} and c_{n}, where c_{n} is unmarked and r_{n-1} is marked and has a single child r_{n-2} that is also marked and has a single child r_{n-3} and so on, until we reach a (marked or unmarked) leaf r_{1}. In other words, T_{n} consists of a line of marked nodes, plus the root and one further unmarked child of the root. We give the root r_{n} some key k_{n}.
We now add another 5 nodes to the heap and delete the minimum of them, causing a consolidate. In more detail let us add a node r_{n+1} with key $k_{n+1} \in\left(0, k_{n}\right)$, one with key 0 and 3 with keys $k^{\prime} \in\left(k_{n+1}, k_{n}\right)$. When we delete the minimum, first both pairs of singletons are combined to two trees of rank 1 , which are combined again to one binomial tree of rank 2 , with the node r_{n+1} as the root and we name its childless child c_{n+1} (confer the picture for the current state).

Since also T_{n} has rank 2 we now combine it with the new tree and r_{n+1} becomes the new root. We now decrease the key of c_{n} to 0 as well as the keys of the two unnamed nodes and delete the minimum after each such operation, as to cause no further effect from consolidate. Decreasing the key of c_{n}, however, will now mark its parent r_{n}, as it is not a root anymore. Thus the remaining heap is of exactly the same shape as T_{n}, except that its depth did increase by one: a T_{n+1}.
Can we create such trees? We sure can by starting with an empty heap, adding 5 nodes, deleting one, resulting in a tree of the following form:

We cut off the lowest leaf and now have a T_{1}. The rest follows via induction.
Obviously, a decrease-key operation on r_{1} will cause a cascade of $\Omega(n)$ cuts if applied to a heap consisting of such a T_{n}.

Exercise 3: Union Find

Consider a sequence of operations on a disjoint-set forest using the union-by-size heuristic with path compression. Let f be the number of find-operations and n the number of make_set-operations.

Show that the total costs are $O(f+n \cdot \log n)$.

Sample Solution

As there are n make-set operations, the are at most $n-1$ union-operations. Each make-set or union costs $O(1)$, so the total costs for these operations is $O(n)$. Thus we have to show that the costs of all find-operations is $O(f+n \cdot \log n)$. Let $\alpha_{1}, \ldots, \alpha_{f}$ be the sequence of find-operations. Consider a single operation $\alpha_{i}=\operatorname{find}(x)$. Let p_{i} be the path from x to the root r of the tree in which x is contained (i.e., $p_{i}=(x$, x.parent, x.parent.parent $\left., \ldots, r)\right)$. The costs of α_{i} is $O\left(\left|p_{i}\right|\right)$ due to path compression. Let \tilde{p}_{i} be the set of those nodes in p_{i} which are not the root or the direct child of the root. Then the costs of α_{i} can be written as $O\left(1+\left|\tilde{p_{i}}\right|\right)$. Therefore, the costs of all find-operations is $O\left(f+\sum_{i=1}^{f}\left|\tilde{p_{i}}\right|\right)$. If an element x is contained in \tilde{p}_{i}, then it gets attached to the root after calling α_{i}. To be contained in some $\tilde{p_{j}}$ for $j>i$, the tree x is contained in must be attached to a larger tree (union-by-size heuristic). This can happen at most $\log n$ times. Therefore, x is contained in at most $\log n$ sets $\tilde{p_{i}}$. It follows that $\sum_{i=1}^{f}\left|\tilde{p}_{i}\right| \leq n \log n$.

