
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger

Algorithm Theory

Sample Solution Exercise Sheet 7

Exercise 1: Load Balancing (2+6+5+5+4 Points)

Recall the load balancing problem from the lecture: Given m machines, n jobs and for each job i a
processing time ti, we want to assign each job to a machine such that the makespan (largest total
processing time of any machine) is minimized. We have seen that the modified greedy algorithm, in
which we go through the jobs by decreasing length and assign each job to the machine that currently
has the smallest load, has an approximation ratio of 3/2.
In this exercise, we want to prove that the algorithm has an even better approximation ratio.

Assume we have n jobs with lengths t1 ≥ t2 ≥ · · · ≥ tn. Let T be the makespan of the greedy solution
and let i be a machine with load T . Further, let n̂ be the last job that is scheduled on machine i.

(a) Shortly argue why it is sufficient to ignore jobs n̂ + 1, . . . , n and instead prove the desired ratio
between greedy and optimal for jobs 1, . . . , n̂.

(b) Show that if an optimal solution for jobs 1, . . . , n̂ assigns at most two jobs to each machine, the
algorithm computes an optimal solution.

Hint: Think of a “canonical” way to assign at most two jobs to each machine and show that
T ≤ Tcanonical ≤ Topt.

(c) Show that therefore, either tn̂ ≤ Topt/3 or the greedy algorithm computes an optimal solution.

(d) Conclude that the algorithm has an approximation ratio of at most 4/3.

(e) Show that the 4/3 bound is tight, i.e., there is a sequence of instances for which the ratio between
Greedy and OPT converges to 4/3.
Hint: Consider 2m + 1 jobs for m machines, three jobs with processing time m and two jobs with
processing times m + 1,m + 2, . . . , 2m− 1 each.

Sample Solution

(a) If we run the greedy algorithm on jobs 1, . . . , n̂, we obtain the same makespan as if we run it on
jobs 1, . . . , n. An optimal solution for 1, . . . , n̂ can only be smaller than one for 1, . . . , n. It follows
that the ratio between greedy and optimal for 1, . . . , n is at least as good as for 1, . . . , n̂.

(b) If OPT assigns at most two jobs to each machine, there are at most 2m jobs. For convenience, if
n̂ < 2m, we add 2m− n̂ empty jobs (with processing time 0) such that we have exactly 2m jobs.
Assume we have t1 ≥ t2 ≥ · · · ≥ t2m. The canonical algorithm pairs job j with job 2m− j + 1 and
assigns it to machine j. We show that we can transform OPT to the canonical solution without
increasing the makespan.

Assume OPT differs from the canonical solution and let j be the smallest integer for which job
j is not paired with job 2m − j + 1 in OPT. It follows that in OPT, job j is paired with some
job k < 2m − j + 1 and job 2m − j + 1 is paired with some job j′ > j. We have tj′ ≤ tj and



t2m−j+1 ≤ tk and thus tj + t2m−j+1 ≤ tj + tk and tj′ + tk ≤ tj + tk. Therefore, building the pairs
(tj , t2m−j+1) and (tj′ , tk) instead of (tj , tk) and (tj′ , t2m−j+1) does not increase the makespan. By
continuing this procedure we can transform OPT to the canonical solution without increasing the
makespan. It follows Tcanonical ≤ Topt.

Next we prove T ≤ Tcanonical. The first m jobs are assigned to the same machines in both the
greedy and the canonical solution. We first observe that if at some point of the Greedy execution
some machine k has only one job, then also all machines j < k have only one job (because otherwise
Greedy would have assigned a job to a machine though there was another machine with less load).
It follows that before assigning job 2m + 1 − k for some 1 ≤ k ≤ m, machine k has only one job
(that is job k with length tk). If Greedy does not assign job 2m+ 1− k to machine k but to some
machine j > k, machine j must have load ≤ tk (before the assignment) and hence afterwards load
≤ tk + t2m+1−k ≤ Tcanonical. So in each step of Greedy, the load of the machine that Greedy latest
assigned a job is at most Tcanonical.

(c) If OPT assigns at most two jobs to each machine, then by (b) Greedy is optimal. Otherwise, there
is at least one machine that OPT assigns three jobs and as tn̂ is the minimum job length, the load
on this machine (and hence Topt) is at least 3tn̂.

(d) Recall that T is the makespan of the greedy solution, i a machine with load T and n̂ the last job
that is scheduled on machine i. It follows that before assigning job n̂, all machines must have a
load of at least T − tn̂. Therefore Topt ≥ T − tn̂ (the optimal makespan is at least the average
load which is at least T − tn̂). By (c) we know that either Greedy is optimal or tn̂ ≤ Topt/3, so we
obtain Topt ≥ T − Topt/3 and hence 4

3Topt ≥ T .

(e) Given m machines and three jobs with processing time m and two jobs with processing times
m + 1,m + 2, . . . , 2m − 1 each, Greedy assigns the first 2m jobs to the machines such that each
machine has load 3m − 1 and puts the last job to some arbitrary machine, so the makespan is
4m−1. An optimal solution assigns the three jobs with length m to one machine and the remaining
2m− 2 jobs to the other machines such that each machine has load 3m. Thus the approximation
ratio is 4m−1

3m which converges to 4/3 for m→∞.

Exercise 2: Two Knapsacks (2+6 Points)

Consider the following variation of the knapsack problem: Given items 1, . . . , n where each item i has
a positive integer weight wi ∈ N and a positive value vi > 0 and two knapsacks of capacities W1 and
W2, we want to pack the items into the knapsacks such that

• for j ∈ {1, 2}, the total weight of the items in knapsack j is at most Wj .

• The total value of the items that are packed in either knapsack is maximized.

(a) Prove that this problem is not equivalent to the standard knapsack problem with one knapsack of
capacity W1+W2 by showing that the total value that can be packed into one knapsack of capacity
W1 + W2 can be arbitrarily larger than the total value that can be packed into two knapsacks of
capacities W1 and W2.

(b) Assume that W1 ≥ W2. A simple strategy would be to first compute an optimal solution for a
knapsack of capacity W1 and afterwards, with the remaining elements, an optimal solution for a
knapsack of capacity W2. Show that this algorithm always computes at least a 2-approximation
for the problem.

Sample Solution

(a) Consider an instance with W1 = W2 = 1 and one item with weight 2 and arbitrarily large value.



(b) Let vopt(W1) (vopt(W2), resp.) be the total value of items packed into the knapsack of capacity
W1 (W2, resp.) by an optimal algorithm and valg(W1) the total value of items packed into the
knapsack of capacity W1 by the described algorithm.

vopt(W1) is a feasible (but not necessarily optimal) solution for the problem with one knapsack of
capacity W1. As valg(W1) is an optimal solution for this, we have valg(W1) ≥ vopt(W1). Similarly,
vopt(W2) is a feasible solution for the problem with one knapsack of capacity W2 and hence we
have valg(W1) ≥ vopt(W2) because W1 ≥ W2 (making the knapsack larger can only increase the
optimal solution). So we have

valg(W1) + valg(W2) ≥ valg(W1) ≥ max{vopt(W1), vopt(W2)} ≥
vopt(W1) + vopt(W2)

2
.

Exercise 3: Vertex Cover Approximation (4 Points)

Show that taking all nodes is a 2-approximation algorithm for the vertex cover problem in regular
graphs (graphs where all nodes have the same degree)

Sample Solution

In an r-regular graph, each vertex can cover at most r edges. As the graph has rn/2 edges, at least
n/2 vertices are needed to cover all edges.


