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Exercise 1: Online Vertex Cover ( Points)

Let G = (V,E) be a graph. A set S ⊆ V is called a vertex cover if and only if for every edge {u, v} ∈ E
at least one of its endpoints is in S. The minimum vertex cover problem is to find such a set S of
minimum size.
We are considering the following online version of the minimum vertex cover problem. Initially, we are
given the set of nodes V and an empty vertex cover S = ∅. Then, the edges appear one-by-one in an
online fashion. When a new edge {u, v} appears, the algorithm needs to guarantee that the edge is
covered (i.e., if this is not already the case, at least one of the two nodes u and v needs to be added
to S). Once a node is in S it cannot be removed from S.

(a) Provide a deterministic online algorithm with competitive ratio at most 2. That is, your online
algorithm needs to guarantee at all times that the vertex cover S is at most by a factor 2 larger
than a current optimal vertex cover. Prove the correctness of your algorithm.

(b) Show that any deterministic online algorithm for the online vertex cover problem has competitive
ratio at least 2.

(c) Use Yao’s principle to show that any randomized online algorithm for the online vertex cover
problem has competitive ratio at least 3/2.

Sample Solution

(a) Online Algorithm: Start with S = ∅. When a new edge appears our online algorithm first checks
whether the new edge is already covered, i.e., if it has at least one endpoint in S. If that edge is
not covered the algorithm adds both endpoints of the new edge to S; if the edge is already covered
then the algorithm adds no point to S.

Correctness: Our online algorithm guarantees that any edge that appears will have at least one
endpoint in S. Therefore, the set S is a vertex cover of the graph.

Claim: The above online algorithm provides a competitive ratio of 2.

Proof. Let M be the set of those edges {u, v} with u ∈ S and v ∈ S. We have |M | = |S|
2 .

We have seen in the lecture that the size of a matching of a graph is upper bounded by the size of
a vertex cover of the graph.1 Let S∗ be the smallest possible vertex cover. If we could show that
M is a matching then we would have |S|2 = |M | ≤ |S∗|. Hence the claim holds if we show that M
is a matching. Our online algorithm guarantees that for any two edges {u, v} and {u′, v′} in M ,
the edges are not incident.

More precisely, assume both endpoints of {u, v} are added to S. Therefore the edge is added to
M . There can be no edges in M which are adjacent {u, v} and were added to M before {u, v},

1Fix a vertex cover and a matching of a graph. Then any edge of the matching has an endpoint in the vertex cover
(every edge is covered). On the other hand every node in the vertex cover has at most one adjacent edge in the matching
(lest the condition of a matching would be violated).



otherwise {u, v} would not have been added to M in the first place. Let {u′, v′} be an edge that
appears after {u, v}. It will be added to M only if u 6= u′ and v 6= v′. This guarantees that these
two edges in M are not incident. Hence M is a matching. �

(b) Let us fix OPT to be an optimal offline algorithm and ALG to be any online algorithm. We (as an
adversary) construct a scenario with only two incident edges where ALG has to put two vertices
in S while OPT can cover both edges by only one vertex.

We send the first edge. If ALG puts both endpoints of the first edge in S then the second edge
can be connected to any endpoint of the first edge. If ALG adds only one of the endpoints of the
first edge to S then we connect the second edge to the endpoint of the first edge that is not in S.
So the second edge has already no endpoint in S and ALG has to add at least one of the endpoint
of the second edge to S. Therefore ALG returns S whose size is at least 2.

By contrast, OPT chooses only the middle vertex to cover both edges. Note that OPT can do this
since it is offline and knows the input sequence in advance. This means that for any deterministic
algorithm ALG we have a online order of edges of a graph G (given above), such that for output
S of ALG and the minimum vertex cover S∗ of G we have |S| ≥ 2|S∗|. This proves that we have
a strict competetive ratio of at least 2 for deterministic algorithms.

Remark: For this exercise we were satisfied with a scenario showing that any deterministic algo-
rithm has a strict competitive ratio of at least 2.

In order to prove the same for a competitive ratio of 2 (without the keyword strict) we have to do
more. For a contradiction assume that we could do better than 2-competitive, i.e., for constants
α ≥ 0 and 1 ≤ c < 2 we have |S| ≤ c · |S∗|+ α.

We duplicate the above scenario k times, meaning that we have k pairs of edges which we send
successively. Like before, we always connect each pair of edges in such a manner that a given
deterministic algorithm ALG needs two nodes for each pair to cover both edges, while OPT needs
just one (the shared middle node). This means that |S| = 2k and |S∗| = k. Then |S| ≤ c · |S∗|+α
is equivalent to k ≤ α

2−c . The contradiction arises from the fact that the size k of our scenario can
be made arbitrarily large.

(c) We construct a randomized input and show that the best deterministic algorithm for that kind of
input distribution has an expected (strict) competitive ratio of 3

2 . The basic idea is the same as
in part (b). As before, we send two adjacent edges. Let {u, v} be the first edge being sent. The
second edge is subject to a random choice. With probability 1

2 we attach it to u otherwise to v.

As before ALG has to choose after the first edge {u, v} which node(s) it adds to S. Since ALG
does not know whether the next edge will attach to u or to v, the smartest thing ALG can do is
to just pick one node, w.l.o.g. u and hope that the next edge will attach to it.

Note that ALG needs to add at least one endpoint of {u, v} to S since by problem formulation
every edge needs to be covered immediately. Also note that it would be stupid for ALG to add
both endpoints of {u, v} to S right away, since then it would definitely require two nodes even
though it could gamble and hope to use just one.

So w.l.o.g. ALG adds u to S and with probability 1
2 it wins and the next edge attaches to u and

it needs only one node to cover both edges. However, with probability also 1
2 ALG looses and the

next edge attaches to v, thus ALG has to add a second node to S to produce a vertex cover.

The expectation is E(|S|) = 1
2 · 1 + 1

2 · 2 = 3
2 . As Before OPT still requires only one edge. By Yao’s

principle the expectation of the best randomized algorithm on a worst case input can only be as
good as the best deterministic algorithm on a worst case randomized input. Thus any randomized
algorithm for the online vertex cover problem has a strict competitive ratio at least 3

2 .

Remark: Again we were satisfied with the proof that a randomized algorithm has a strict competitive
ratio of at least 3

2 . For the proof that there is no randomized algorithm better than 3
2 -competitive

(without the keyword strict) we can employ the same proof by contradiction as in (b).



Exercise 2: Ski Rental Problem ( Points)

Assume you go skiing and have to decide whether to buy or rent skis. Assume that cost is your only
concern and that buying ski is k times more expensive than renting it for a day (assume that k is an
integer).
After buying your own ski you can use them forever without additional cost. Finally assume that you
have no knowledge how many days n you will ever go skiing in total.
This means that as long as you go skiing you have to decide on every new skiing-day in an online
fashion whether to buy or rent, until you finally decide to buy a pair of ski.

(a) Describe the best offline strategy OPT (n is known beforehand) and give the cost as a function
depending on n.

(b) Assume your online strategy ALG (where you have no knowledge of n) is to buy a pair of ski
before your first skiing day. Give an upper bound for the strict competitive ratio of ALG and
explain it briefly.

(c) Give a strategy ALG’ that is strictly 2-competitive and prove it.

Sample Solution

(a) If n ≥ k, buy skis on the first day, otherwise rent it for n days. If x are the costs for one day, the
total costs are OPT(n) = x ·min{k, n}.

(b) If you buy skis on the first day, you pay ALG = x ·k. We have OPT ≥ x and thus ALG/OPT ≤ k.

(c) The online strategy ALG’ works as follows: Rent skis on each day ≤ k and buy skis on day k+ 1.
For n ≤ k we have ALG’ = xn = OPT and for n > k we obtain ALG’ = 2xk and OPT = xk and
hence ALG/OPT = 2.

Exercise 3: Maximum Cut ( Points)

Let G = (V,E) be an unweighted undirected graph. A maximum cut of G is a cut whose size is at
least the size of any other cut in G.

(a) Give a simple randomized algorithm that returns a cut of size at least 1/2 times the size of a
maximum cut in expectation and prove this property.

(b) Prove that the following deterministic algorithm (Algorithm 1) returns a cut of size at least 1/2
times the size of a maximum cut.

Algorithm 1 Deterministic Approximate Maximum Cut

Pick arbitrary nodes v1, v2 ∈ V
A← {v1}
B ← {v2}
for v ∈ V \ {v1, v2} do

if degA(v) > degB(v) then . degX(v) is the number of v’s neighbors in X ⊆ V .
B ← B ∪ {v}

else
A← A ∪ {v}

Output A and B

(c) Let us now consider an online version of the maximum cut problem, where the nodes V of a
graph G = (V,E) arrive in an online fashion. The algorithm should partition the nodes V into
two sets A and B such that the cut induced by this partition is as large as possible. Whenever a



new node v ∈ V arrives together with the edges to the already present nodes, an online algorithm
has to assign v to either A or B. Based on the above deterministic algorithm (Alg. 1), describe
a deterministic online maximum cut algorithm with strict competitive ratio at least 1/2. You can
use the fact that Algorithm 1 computes a cut of size at least half the size of a maximum cut.

Hint: An online algorithm for a maximization problem is said to have strict competitive ratio α if
it guarantees that ALG ≥ α ·OPT, where ALG and OPT are the solutions of the online algorithm
and of an optimal offline algorithm, respectively.

(d) Show that no deterministic online algorithm for the online maximum cut problem can have a strict
competitive ratio that is better than 1/2.

Sample Solution

(a) Initialize S = ∅. Each node joins S independently with probability 1/2. For an edge e = {u, v},
the probability that e is between S and V \ S is Pr(u ∈ S ∧ v /∈ S) + Pr(u /∈ S ∧ v ∈ S) = 1/2. So
in expectation, half of the edges are between S and V \ S.

(b) We distinguish between crossing edges with one endpoint in A and one in B and inner edges with
either both endpoints in A or both in B. We show that the following property is a loop-invariant:
The number of crossing edges is at least the number of inner edges.

This is true before entering the loop the first time (there are no inner edges). In the following
iterations, a node is added to B iff it has more neighbors in A than it has in B and it is added
to A iff it has at least as many neighbors in B as in A. So in either case, the number of crossing
edges that are added is at least the number of inner edges that are added.

When all nodes are processed, the number of crossing edges is at least the number of inner edges,
i.e., at least half of the edges are crossing edges. So the resulting cut has size at least |E|/2 and
|E| is an upper bound for a maximum cut.

(c) Algorithm 1 actually describes an online algorithm. The first node that arrives is assigned to A,
the second node to B and all other nodes are processed as described in the loop. As shown we
obtain ALG≥ |E|/2 and OPT≤ |E| and hence the competitive ration is at least 1/2.

(d) Consider a graph with nodes v1, v2, . . . , vn. Nodes v1 and v2 are adjacent to each other node, more
edges do not exist. The cut ({v1, v2}, {v3, . . . , vn}) has size 2(n − 2) ≤OPT. Assume ALG is an
online algorithm with competitive ratio r > 1/2 which computes a cut (S, V \ S) for any graph
(V,E). If ALG first receives v1 and v2, it must put one in S and the other in V \ S, because
otherwise we had ALG= 0 and OPT= 1 in case the graph consists only of v1 and v2 (which an
online algorithm can not know at this point). Any cut with v1 ∈ S and v2 /∈ S (or vice versa) has
size n − 1. Therefore we have ALG/OPT≤ n−1

2(n−2)
n→∞−→ 1/2. So for n sufficiently large we have

ALG/OPT< r, contradicting that ALG has competitive ratio r.


