Albert-Ludwigs-Universität, Inst. für Informatik Prof. Dr. Fabian Kuhn Mohamad Ahmadi

Theoretical Computer Science - Bridging Course Winter Term 2019/2020 Exercise Sheet 6

for getting feedback submit electronically by 12:15, Monday, December 2, 2019

Exercise 1: Constructing Turing Machines (3+3 Points)

Construct a Turing Machine for each of the following languages.

(a) $L_1 = \{a^i b^j a^i b^j | i, j > 0\}$

(b) Language L_2 of all strings over alphabet $\{a, b\}$ with the same number of a's and b's.

Remark: It is sufficient to give a detailed description of the Turing Machines. You do not need to give formal definitions.

Exersive 2: Semi-Decidable vs. Recursively Enumerable (3+3 Points)

Very often people in computer science use the terms *semi-decidable* and *recursively enumerable* equivalently. The following exercise shows in which way they actually are equivalent. We first recall the definition of both terms.

A language L is *semi-decidable* if there is a Turing machine which accepts every $w \in L$ and does not accept any $w \notin L$ (this means the TM can either reject $w \notin L$ or simply not stop for $w \notin L$).

A language is *recursively enumerable* if there is a Turing machine which eventually outputs every word $w \in L$ and never outputs a word $w \notin L$.

- (a) Show that any recursively enumerable language is semi-decidable.
- (b) Show that any semi-decidable language is recursively enumerable.

Exercise 3: Halting Problem

(2+2+2+2 Points)

The special halting problem is defined as

 $H_s = \{ \langle M \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \}.$

(a) Show that H_s is undecidable.

Hint: Assume that M is a TM which decides H_s and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

(b) Show that the special halting problem is recursively enumerable.

(c) Show that the complement of the special halting problem is not recursively enumerable. Hint: What can you say about a language L if L and its complement are recursively enumerable? (if you make some observation for this, also prove it)

- (d) Let L_1 and L_2 be recursively enumerable languages. Is $L_1 \setminus L_2$ recursively enumerable as well?
- (e) Is $L = \{w \in H_s \mid |w| \le 1742\}$ decidable? Explain your answer!