Theoretical Computer Science - Bridging Course Winter Term 2019/2020 Exercise Sheet 2

for getting feedback submit electronically by 12:15, Monday, November 04, 2019

Exercise 1: Drawing DFAs and NFAs

(8 Points)

Consider the following three languages over the alphabet $\{0, 1\}$.

 $L_1 = \{w \mid |w| \ge 2 \text{ and } w \text{ contains an even number of zeros}\}.$

 $L_2 = \{ w \mid w \text{ contains exactly two ones} \}.$

 $L_3 = \{w \mid w \text{ has an odd number of zeros and ends with } 1\}.$

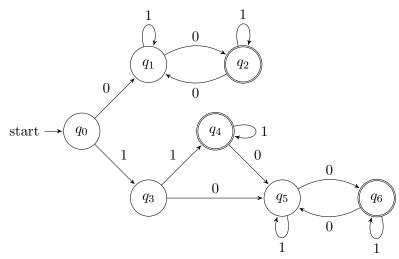
First draw a DFA for each of the languages L_1, L_2 and L_3 . Then, for each of the following languages, provide an NFA that recognizes the given language.

- (a) L_1^*
- (b) $L_3 \circ L_2$
- (c) $L_2 \cup L_3$

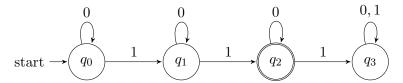
Sample Solution

Here are the DFAs for the three languages:

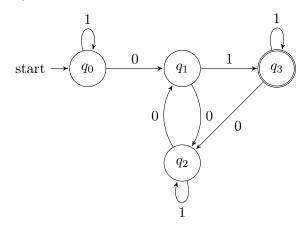
(a) L_1 :



(b) L_2 :



(c) L_3 :



For constructing the NFAs regarding the given three languages in (a), (b), and (c), it is enough to reuse the drawn DFAs and insert proper epsilon transitions. Let N_1 and N_2 denote two DFAs. Then the following figures show how to utilize the DFAs to construct $L(N_1) \cup L(N_2)$, $L(N_1) \circ L(N_2)$, and $L(N_1)^*$ respectively. The figures are taken from the lecture slides.

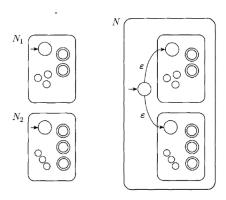


Figure 1: $L(N_1) \cup L(N_2)$

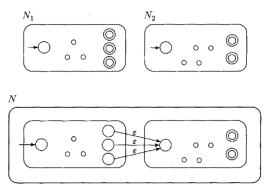


Figure 2: $L(N_1) \circ L(N_2)$

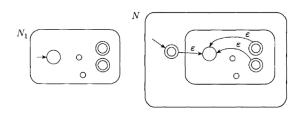


Figure 3: $L(N_1)^*$

Exercise 2: Regular Languages

(4 Points)

Let L, L_1, L_2 be regular languages. Show that both $\overline{L} := \Sigma^* \setminus L$ and $L_1 \cap L_2$ are regular as well by constructing the corresponding DFAs.

Remark: No need for drawing state diagrams. Show how a DFA for the language in question can be constructed presuming the existence of DFAs for L, L_1, L_2 .

Sample Solution

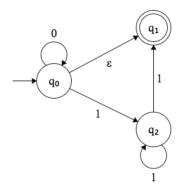
Let $M=(Q,\Sigma,\delta,q_0,F)$ be the DFA recognizing L. We define the DFA $\overline{M}:=(Q,\Sigma,\delta,q_0,\overline{F})$ by inverting the set of accepting states of M, i.e. $\overline{F}:=Q\setminus F$. We show that \overline{M} recognizes \overline{L} . If $w\in \overline{L}$, then $w\notin L$ and so M halts in an non accepting state q when processing w. \overline{M} will halt in the same state (because we only changed the set of accepting states), but here q is an accepting state. Analogously, if $w\notin \overline{L}$, then $w\in L$ and so M halts in an accepting state when processing w. \overline{M} will again halt in the same state, but here q is a non accepting state. So we have that \overline{M} halts in an accepting state when processing w if and only if $w\in \overline{L}$. Thus \overline{M} recognizes the language \overline{L} which is therefore regular.

For proving the regularity of $L_1 \cap L_2$, we construct the product automaton like done in the lecture (Theorem 1.25. p. 30) for $L_1 \cup L_2$, with the difference that we set $F := F_1 \times F_2$ as the set of accepting states, where F_1 and F_2 are the sets of accepting states of the DFAs for L_1 and L_2 .

Exercise 3: NFA to DFA

(8 Points)

Consider the following NFA.



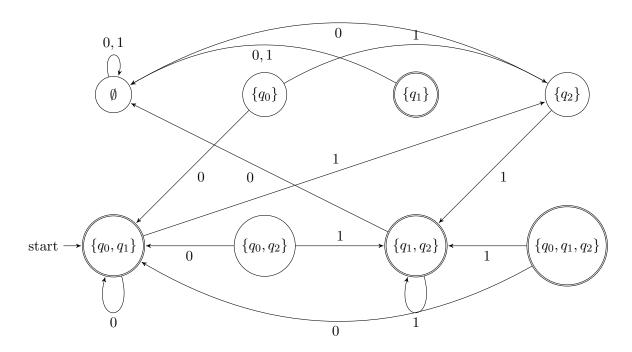
- (a) Give a formal description of the NFA by giving the alphabet, state set, transition function, start state and the set of accept states.
- (b) Construct a DFA which is equivalent to the above NFA by drawing the corresponding state diagram.
- (c) Explain what language the automaton recognizes.

Sample Solution

(a) The set of states is $Q = \{q_0, q_1, q_2\}$; the alphabet $\Sigma = \{0, 1\}$; the initial state is q_0 ; the set of accept states is $F = \{q_1\}$; the transition function is shown in the following table.

	q_0	q_1	q_2
0	q_0	Ø	Ø
1	q_2	Ø	q_1, q_2
ϵ	q_1	Ø	Ø

(b)



If we leave out nodes with no path leading into it, he have

