Theoretical Computer Science - Bridging Course Winter Term 2019/2020 Exercise Sheet 7

for getting feedback submit electronically by 12:15 am, Monday, December 9, 2019

Exercise 1: Decidability

Let Σ be a fixed finite alphabet. Show that the language of deterministic finite automatons (DFAs) on Σ that accept every word is decidable. Formally, show that

 $L = \{ \langle A \rangle \mid A \text{ is a deterministic finite automaton with } L(A) = \Sigma^* \}$

is a decidable language.

Remark: You can use that it is not difficult to construct a Turing machine which tests whether an input is the well formed encoding of a deterministic finite automaton.

Sample Solution

Let B be a DFA such that the language generated by B is Σ^* . That is, $L_B = \Sigma^*$. (It is easy to see that this is always possible for any given alphabet Σ .) We have shown in the video lecture that testing equivalence for two DFA is a decidable problem. Let M be such a turing machine that can test equivalence for two DFA. We can construct a turing machine M', such that upon input A where A is a DFA, it will run M with input $\langle A, B \rangle$. If M accepts the input, then M' accepts the input A as well, otherwise M' rejects. Since M will give definite answer in finite time, we know M' will give definite answer in finite time as well. Hence, we know \mathcal{L} is decidable.

Exersive 2: Landau Notation

(2+2+3 Points)

(7 Points)

The set $\mathcal{O}(f)$ contains all functions that are asymptotically not growing faster than the function f (when additive or multiplicative constants are neglected). That is:

$$g \in \mathcal{O}(f) \Longleftrightarrow \exists c \ge 0, \exists M \in \mathbb{N}, \forall n \ge M : g(n) \le c \cdot f(n)$$

For the following pairs of functions, check whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Prove your claims (you do not have to prove a negative result \notin , though).

(a) f(n) = 100n, g(n) = 0.1 ⋅ n²
(b) f(n) = ³√n², g(n) = √n
(c) f(n) = log₂(2ⁿ ⋅ n³), g(n) = 3n *Hint:* You may use that log₂ n ≤ n for all n ∈ N.

Sample Solution

- (a) It is $100n \in \mathcal{O}(0.1n^2)$. To show that we require constants c, M such that $100n \leq c \cdot 0.1n^2$ for all $n \geq M$. Obviously this is the case for c = 1000 and M = 1.
- (b) We have $g(n) \in O(f(n))$. Let c := 1 and M := 1. Then we have

 \Leftrightarrow

$$g(n) \le c \cdot f(n) \tag{1}$$

$$\sqrt{n} \le n^{2/3} \tag{2}$$

$$\Leftrightarrow 1 \le n^{1/6} (3)$$

$$\Leftrightarrow \qquad \qquad 1 \le n \tag{4}$$

The last inequality is satisfied because $n \ge M = 1$.

(c) $f(n) \in O(g(n))$ holds. We give c > 0 and $M \in \mathbb{N}$ such that for all $n \ge M : \log_2(2^n \cdot n^3) \le c \cdot n$. As $cn \in O(g(n))$ holds for every constant c > 0 the result will follow with the transitivity of the *O*-notation.

$$\log_2(2^n \cdot n^3)$$

= $\log_2(2^n) + \log_2(n^3)$
= $n + 3 \cdot \log_2(n)$
 $\leq n + 3n = 4n.$

Thus $\log_2(2^n \cdot n^3) \leq c \cdot n$ for $n \geq M := 1$ and c := 4.

We also have that $g(n) \in O(f(n))$ holds because

$$g(n) = 3n \le 3(n+3 \cdot \log_2(n)) = 3(\log_2(2^n \cdot n^3)) = 3 \cdot f(n).$$

Thus with c = 3 and for $n \ge M := 1$ we have $g(n) \le cf(n)$.

Exercise 3: Sorting Functions by Asymptotic Growth (6 Points)

Sort the following functions by asymptotic growth using the \mathcal{O} -notation. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

n^2	\sqrt{n}	2^n	$\log(n^2)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	n!	$n\log n$
$n \cdot 2^n$	n^n	$\sqrt{\log n}$	n

Sample Solution

	$\sqrt{\log n}$	$<_{\mathcal{O}}$	$\log(\sqrt{n})$	$=_{\mathcal{O}}$	$\log n$	$=_{\mathcal{O}}$	$\log(n^2)$
$<_{\mathcal{O}}$	$(\log n)^2$	$<_{\mathcal{O}}$	\sqrt{n}	$<_{\mathcal{O}}$	n	$=_{\mathcal{O}}$	$10^{100}n$
$<_{\mathcal{O}}$	$n\log n$	$<_{\mathcal{O}}$	n^2	$<_{\mathcal{O}}$	n^{100}	$<_{\mathcal{O}}$	2^n
$<_{\mathcal{O}}$	$n \cdot 2^n$	$<_{\mathcal{O}}$	3^n	$<_{\mathcal{O}}$	n!	$<_{\mathcal{O}}$	n^n