
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
Mohamad Ahmadi

Theoretical Computer Science - Bridging Course

Winter Term 2019/2020

Exercise Sheet 8

for getting feedback submit electronically by 12:15, Monday, December 16 2019

Exercise 1: The Class P (2+3+2+3 Points)

P is the set of languages which can be decided by an algorithm whose runtime can be bounded by
p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that
the following languages (∼= problems) are in the class P. Since it is typically easy (i.e. feasible in
polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider
well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) Palindrome:= {w ∈ {0, 1}∗ | w is a Palindrome}

(b) List:={〈A, c〉 | A is a finite list of numbers which contains two numbers x,y such that x+ y = c}.

(c) 3-Clique := {〈G〉 | G has a clique of size at least 3}

(d) 17-DominatingSet := {〈G〉 | G has a dominating set of size at most 17}

Remark: A dominating set for a graph G = (V,E) is a set D ⊆ V such that for every vertex v ∈ V , v
is either in D or adjacent to a node in D.
Remark: A clique in a graph G = (V,E) is a set Q ⊆ V such that for all u, v ∈ Q : {u, v} ∈ E.

Sample Solution

(a) We have already seen in exercise sheet 5 that the problem can be solved with a Turing machine
with O(n2) head movements. The same idea/algorithm shows that the problem is in P.

(b) Assume that the length of A is n. We can simply go through all combinations of tuples of A with
two for-loops with indexes i and j where i ranges from 1 to n and j ranges from i+ 1 to n. Then
we can simply test whether A[i] + A[j] == c and accept if this ever evaluates to true, otherwise
we reject. This has a runtime of O(n2) because the test can be done in O(1) and there are O(n2)
tuples.

(c) Let G = (V,E) and |V | = n. Then we know |E| = O(n2). Upon input G, we can enumerate
all possible triples (v1, v2, v3) such that v1 6= v2 6= v3 6= v1. There exist at most

(
n
3

)
= O(n3)

such triples. For each such triple (v1, v2, v3), we examine whether (v1, v2) ∈ E, (v1, v3) ∈ E, and
(v2, v3) ∈ E. Since |E| = O(n2), this examination can be done in O(n2) time. If during the
examination process, we find one triple that satisfies the requirement, we found a clique of size 3
accept G. Otherwise, when we finish examining all possible triple, we reject G since it does not
contain a clique of size 3. The runtime of the above procedure is O(n5), thus 3-Clique ∈ P.

1

(d) A dominating set of size 17 exists if and only if all nodes are covered by a subset of the nodes
D ⊆ V with |D| = 17. There are less than n17 sets with |D| = 17. We iterate through all of the
sets (e.g., by using 17 nested for loops iterating over the identifiers of the node set if we number
the nodes from 1 to n.). Then for each set we test whether it dominates the whole graph by
testing whether every node not in the set has a neighbor in the set. If this is the case for some set
we accept. We reject if it’s not the case for all sets.

This test can be done in time O(n) for each other node by going through the respective part of
the adjacency matrix. There are at most |V \D| ≤ n nodes outside of D for a D with |D| = 17.
So to check whether a specific D is a dominating set we only need O(n2) time. In total the time
complexity is O(n17 · n2) = O(n19). Therefore 17-DominatingSet ∈ P.

Exercise 2: The Class NP (3 Points)

Consider the following problem, called SUBSET-SUM. Given a collection S of integers x1, . . . , xk and
a target t, it is required to determine whether S contains a sub-collection that adds up to t. Then,
the problem can be given by

SUBSET-SUM =

{
〈S, t〉|S = {x1, . . . , xk}, and for some {y1, . . . , yl} ⊆ {x1, . . . , xk} we have

∑
i

yi = t

}

Show that SUBSET-SUM is in NP.

Sample Solution

Consider the following verifier for SUBSET-SUM on input 〈〈S, t〉, C〉. The verifier first tests whether
C is a collection of numbers that add up to t. Then, it tests whether all the numbers in C are also in
S. If both pass, it accepts, and otherwise it rejects.
Regarding the first test, it scans C once, and regarding the second test, it scans S at most |C| times.
Therefore, the total running time is polynomial in the input size.

Exercise 3: The Class NPC (7 Points)

Let L1, L2 be languages (problems) over alphabets Σ1,Σ2. Then L1 ≤p L2 (L1 is polynomially
reducible to L2), iff a function f : Σ∗1 → Σ∗2 exists, that can be calculated in polynomial time and

∀s ∈ Σ1 : s ∈ L1 ⇐⇒ f(s) ∈ L2.

Language L is called NP-hard, if all languages L′ ∈ NP are polynomially reducible to L, i.e.

L is NP-hard⇐⇒ ∀L′ ∈ NP : L′ ≤p L.

The reduction relation ’≤p’ is transitive (L1 ≤p L2 and L2 ≤p L3 ⇒ L1 ≤p L3). Therefore, in order
to show that L is NP-hard, it suffices to reduce a known NP-hard problem L̃ to L, i.e. L̃ ≤p L.
Finally a language is called NP-complete (⇔: L ∈ NPC), if

1. L ∈ NP and

2. L is NP-hard.

Show HittingSet :={〈U , S, k〉 |universe U has subset of size ≤ k that hits all sets in S ⊆ 2U}∈NPC.1

Use that VertexCover := {〈G, k〉 | Graph G has a vertex cover of size at most k} ∈ NPC.

Remark: A hitting set H ⊆ U for a given universe U and a set S = {S1, S2, . . . , Sm} of subsets
Si ⊆ U , fulfills the property H ∩ Si 6= ∅ for 1 ≤ i ≤ m (H ’hits’ at least one element of every Si).

1The power set 2U of some ground set U is the set of all subsets of U . So S ⊆ 2U is a collection of subsets of U .

2

A vertex cover is a subset V ′ ⊆ V of nodes of G = (V,E) such that every edge of G is adjacent to a
node in the subset.

Hint: For the poly. transformation (≤p) you have to describe an algorithm (with poly. run-time!) that
transforms an instance 〈G, k〉 of VertexCover into an instance 〈U , S, k〉 of HittingSet, s.t. a
vertex cover of size ≤ k in G becomes a hitting set of U of size ≤ k for S and vice versa(!).

Sample Solution

We first show that hitting set belongs in NP, by engineering a deterministic polynomial time verifier
for it. Then we will prove that it is an NP-hard problem, by reducing a known NP-hard problem,
vertex cover (as mentioned in the hint), to hitting set in polynomial time.

Guess and Check: Given a finite set U , a collection S of subsets of U , a positive integer k and a
finite set H as a certificate, the following deterministic polynomial time verifier for hitting set verifies
in polynomial time that (U , S) has a hitting set of size at most k. Let λ be the sum of the sizes of
all the subsets Si in S and δ the size of U . Note that we can check if A is a subset of B with the
following brute-force algorithm: ∀a ∈ A check if ∃b ∈ B : a = b which needs O(|A| · |B|) comparisons.
We can check if H is a subset of U that has at most k elements with O(k · δ) comparisons and if it
contains at least one element from each subset Si in the collection S, with O(λ · k) comparisons. We
accept iff both checks are true. These two checks are obviously equivalent to the problem’s definition,
so hitting set has a polynomial time verifier. Therefore it belongs in NP.

Polynomial Reduction of VertexCover to HittingSet: We will create a polynomial time
reduction from vertex cover to hitting set, proving that since vertex cover is NP-hard, hitting set
must also be NP-hard.
The reduction takes as input an undirected graph G = (V,E), where V is a set of nodes and E a set
of edges defined over those nodes, as well as a positive integer k and outputs the set V , the collection
E = {e1, e2, . . . , en} of subsets of V and the positive integer k. We claim the following equivalence
holds:

“G has a vertex cover of size at most k” ⇔ “(V,E) has a hitting set of size at most k”

Here is the proof:

“G has a vertex cover of size at most k” ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ edge ei = {ui, vi} ∈ E, ui ∈ V ′ or vi ∈ V ′ ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ subset ei in collection E ∃c ∈ ei : c ∈ V ′ ⇔
“(V,E) has a hitting set of size at most k”

This reduction takes time linear to the size of the input (all it does is copy the input to the output),
therefore polynomial. Also, as we showed, it is correct. Therefore, hitting set is at least as hard as
vertex cover and since vertex cover is NP-hard, so is hitting set.
One might notice that this reduction was rather straightforward. This makes sense, since vertex cover
is a special version of hitting set, where each subset Si in the collection S has exactly two elements of
U . Obviously, no problem can be harder than its generalization and since vertex cover is NP-hard,
hitting set (as a generalization of vertex cover) must also be NP-hard.

3

