University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn

Algorithms and Data Structures Winter Term 2020/2021 Exercise Sheet 2

Exercise 1: \mathcal{O} -notation

Prove or disprove the following statements. Use the set definition of the \mathcal{O} -notation (lecture slides week 2, slides 11 and 12).

(a) $4n^3 + 8n^2 + n \in \mathcal{O}(n^3)$

- (b) $2^n \in o(n!)$
- (c) $2\log n \in \Omega((\log n)^2)$

(d) $\max\{f(n), g(n)\} \in \Theta(f(n) + g(n))$ for non-negative functions f and g.

Exercise 2: Sorting by asymptotic growth

Sort the following functions by their asymptotic growth. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$ (no proof needed).

\sqrt{n}	2^n	n!	$\log(n^3)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	(n+1)!	$n\log n$
$2^{(n^2)}$	n^n	$\sqrt{\log n}$	$(2^n)^2$

Exercise 3: Stable Sorting

A sorting algorithm is called stable if elements with the same key remain in the same order. E.g., assume you want to sort the following strings where the sorting key is *the first letter by alphabetic order*:

```
[``tuv", ``adr", ``bbc", ``tag", ``taa", ``abc", ``sru", ``bcb"]
```

A *stable* sorting algorithm must generate the following output:

["adr", "abc", "bbc", "bcb", "sru", "tuv", "tag", "taa"]

A sorting algorithm is not stable (with respect to the sorting key) if it outputs, e.g., the following:

["abc", "adr", "bbc", "bcb", "sru", "taa", "tag", "tuv"]

- (a) Which sorting algorithms from the lecture (except CountingSort) are *not* stable? Prove your statement by giving an appropriate example.
- (b) Describe a method to make any sorting algorithm stable, without changing the *asymptotic* runtime. Explain.

Exercise 4: Running time

Give an asymptotically tight upper bound for the running time of the following algorithm as a function of n.

 $s \leftarrow 0$ for i = 1 to n do j = 1while j < i do $s \leftarrow s + i \cdot j$ $j \leftarrow 2 \cdot j$