University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn

Algorithms and Data Structures Winter Term 2020/2021 Exercise Sheet 9

Exercise 1: Minimum Spanning Trees

Let G = (V, E, w) be an undirected, connected, weighted graph with pairwise distinct edge weights.

- (a) Show that G has a unique minimum spanning tree.
- (b) Show that the minimum spanning tree T' of G is obtained by the following construction:

Start with $T' = \emptyset$. For each cut in G, add the lightest cut edge to T'.

Exercise 2: Travelling Salesperson Problem

Let $p_1, \ldots, p_n \in \mathbb{R}^2$ be points in the euclidean plane. Point p_i represents the position of city i. The distance between cities i and j is defined as the euclidean distance between the points p_i and p_j . A tour is a sequence of cities (i_1, \ldots, i_n) such that each city is visited exactly once (formally, it is a permutation of $\{1, \ldots, n\}$). The task is to find a tour that minimizes the travelled distance. This problem is probably costly to solve. We therefore aim for a tour that is at most twice as long as a minimal tour.

We can model this as a graph problem, using the graph G = (V, E, w) with $V = \{p_1, \ldots, p_n\}$ and $w(p_i, p_j) := \|p_i - p_j\|_2$. Hence, G is undirected and complete and fulfills the triangle inequality, i.e., for any nodes x, y, z we have $w(\{x, z\}) \leq w(\{x, y\}) + w(\{y, z\})$. We aim for a tour (i_1, \ldots, i_n) such that $w(p_{i_n}, p_{i_1}) + \sum_{j=1}^{n-1} w(p_{i_j}, p_{i_{j+1}})$ is small.

Let G be a weighted, undirected, complete graph that fulfills the triangle inequality. Show that the sequence of nodes obtained by a pre-order traversal of a minimum spanning tree (starting at an arbitrary root) is a tour that is at most twice as long as a minimal tour.

 $^{^{1}}$ The Travelling Salesperson Problem is in the class of \mathcal{NP} -complete problems for which it is assumed that no algorithm with polynomial runtime exists. However, this has not been proven yet.