Exercise 1: Minimum Spanning Trees

Let $G = (V, E, w)$ be an undirected, connected, weighted graph with pairwise distinct edge weights.

(a) Show that G has a unique minimum spanning tree.

(b) Show that the minimum spanning tree T' of G is obtained by the following construction:

\[\text{Start with } T' = \emptyset. \text{ For each cut in } G, \text{ add the lightest cut edge to } T'. \]

Exercise 2: Travelling Salesperson Problem

Let $p_1, \ldots, p_n \in \mathbb{R}^2$ be points in the euclidean plane. Point p_i represents the position of city i. The distance between cities i and j is defined as the euclidean distance between the points p_i and p_j. A tour is a sequence of cities (i_1, \ldots, i_n) such that each city is visited exactly once (formally, it is a permutation of $\{1, \ldots, n\}$). The task is to find a tour that minimizes the travelled distance. This problem is probably costly to solve.\(^1\) We therefore aim for a tour that is at most twice as long as a minimal tour.

We can model this as a graph problem, using the graph $G = (V, E, w)$ with $V = \{p_1, \ldots, p_n\}$ and $w(p_i, p_j) := \|p_i - p_j\|_2$. Hence, G is undirected and complete and fulfills the triangle inequality, i.e., for any nodes x, y, z we have $w(\{x, z\}) \leq w(\{x, y\}) + w(\{y, z\})$. We aim for a tour (i_1, \ldots, i_n) such that $w(p_{i_n}, p_{i_1}) + \sum_{j=1}^{n-1} w(p_{i_j}, p_{i_{j+1}})$ is small.

Let G be a weighted, undirected, complete graph that fulfills the triangle inequality. Show that the sequence of nodes obtained by a pre-order traversal of a minimum spanning tree (starting at an arbitrary root) is a tour that is at most twice as long as a minimal tour.

\(^1\)The Travelling Salesperson Problem is in the class of \(NP\)-complete problems for which it is assumed that no algorithm with polynomial runtime exists. However, this has not been proven yet.