
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

Algorithms and Data Structures

Winter Term 2020/2021

Sample Solution Exercise Sheet 2

Exercise 1: O-notation
Prove or disprove the following statements. Use the set definition of the O-notation (lecture slides
week 2, slides 11 and 12).

(a) 4n3 + 8n2 + n ∈ O(n3)

(b) 2n ∈ o(n!)

(c) 2 log n ∈ Ω((log n)2)

(d) max{f(n), g(n)} ∈ Θ(f(n) + g(n)) for non-negative functions f and g.

Sample Solution

(a) True. Choose n0 = 1 and c = 13. For n ≥ n0 we have n3 ≥ n2 ≥ n and hence 4n3 + 8n2 + n ≤
13n3 = cn3.

(b) True. Let c > 0. Choose n0 = max{1c , 8}. For n ≥ n0 we have

c · n!
n≥1/c
≥ 1

n
· n! = (n− 1)! ≥ (n− 1) · (n− 2) · . . . · bn

2
c
n≥8
≥ 4

n
2 = 2n

(c) False. Let c > 0. We have

2 log n ≥ c(log n)2

⇔ 2 ≥ c log n
⇔ 2

c ≥ log n

⇔ 4
1
c ≥ n

So for a given n0 ≥ 1 choose n = max{n0, 4
1
c }+1. For this n we have n > n0 and 2 log n < c(log n)2.

(d) True. Choose n0 = 1, c1 = 1
2 and c2 = 1. For n ≥ n0 we have

c1 · (f(n) + g(n)) ≤ max{f(n), g(n)}
f,g≥0
≤ c2(f(n) + g(n))

Exercise 2: Sorting by asymptotic growth

Sort the following functions by their asymptotic growth. Write g <O f if g ∈ O(f) and f /∈ O(g).
Write g =O f if f ∈ O(g) and g ∈ O(f) (no proof needed).

√
n 2n n! log(n3)

3n n100 log(
√
n) (log n)2

log n 10100n (n + 1)! n log n

2(n
2) nn

√
log n (2n)2



Sample Solution

√
log n <O log(

√
n) =O log n =O log(n3) <O (log n)2 <O

√
n <O 10100n <O n log n

<O n100 <O 2n <O 3n <O (2n)2 <O n! <O (n + 1)! <O nn <O 2(n
2)

Exercise 3: Stable Sorting

A sorting algorithm is called stable if elements with the same key remain in the same order. E.g.,
assume you want to sort the following strings where the sorting key is the first letter by alphabetic
order :

[“tuv”, “adr”, “bbc”, “tag”, “taa”, “abc”, “sru”, “bcb”]

A stable sorting algorithm must generate the following output:

[“adr”, “abc”, “bbc”, “bcb”, “sru”, “tuv”, “tag”, “taa”]

A sorting algorithm is not stable (with respect to the sorting key) if it outputs, e.g., the following:

[“abc”, “adr”, “bbc”, “bcb”, “sru”, “taa”, “tag”, “tuv”]

(a) Which sorting algorithms from the lecture (except CountingSort) are not stable? Prove your
statement by giving an appropriate example.

(b) Describe a method to make any sorting algorithm stable, without changing the asymptotic runtime.
Explain.

Sample Solution

(a) • Selection Sort is not stable. Consider as input the array [x, y, z] with x.key = y.key = 1 and
z.key = 0. In the first step, x and z are swapped, because z has the smallest key in the array.
So we get [z, y, x]. This array will not be altered in the second step (as y.key = x.key), i.e.,
it equals the output of Selection Sort. So x and y have been swapped.

• Quicksort is not stable. Consider as input the array [x, y, z, w] with x.key = 1, y.key =
z.key = 2 and w.key = 0 and assume x is taken as pivot. In the first divide step, y and w
are swapped (i.e., we get [x,w, z, y]) and the array is divided into [x,w] and [z, y]. Recursive
sorting yields [w, x] and [z, y] and thus [w, x, z, y] will be returned. So y and z have been
swapped.

• Mergesort: If you implement Mergesort according to the pseudocode on page 26 of lecture
01, Mergesort is not stable. The reason is the condition A[i] < A[j] in line 7 of the code
which may cause elements with the same key to change order. If we instead use the condition
A[i] ≤ A[j], we make the algorithm stable.

(b) Add the number i to the key of the i-th element in the array (i.e., set A[i].key = (A[i].key, i)).
Now run the given (non-stable) sorting algorithm according to the lexocographic ordering1 on this
new set of keys. That is, we sort according to the original keys and use the index in A as tie
breaker.

Changing the keys takes time O(n). Additionally, each comparison between two elements is
prolonged by an additional O(1) steps. As any sorting algorithm takes Ω(n), the asymptotic
runtime does not change.

1Let (A,<A) and (B,<B) be ordered sets. The lexicographic ordering <lex on A×B is defined by (a, b) <lex (a′, b′) :⇔
a <A a′ ∨ (a = a′ ∧ b <B b′)



Exercise 4: Running time

Give an asymptotically tight upper bound for the running time of the following algorithm as a function
of n.

s← 0
for i = 1 to n do

j = 1
while j < i do

s← s + i · j
j ← 2 · j

Sample Solution

For each i, the running time of the internal while is proportional to log2 i. Hence, the total running
time is proportional to

∑n
i=1 log2 i. For an upper bound, note that this sum is upper bounded by∑n

i=1 log2 n = n log2 n = O(n log n). In order to show that it is tight, note that the sum is lower
bounded by

∑n
i=n/2 log2(n/2) = (n/2) log(n/2) = Ω(n log n). Hence the running time is Θ(n log n).


