Exercise 1: Binary Search Trees I

Consider the following binary search tree.

1. Give all sequences of \texttt{insert(key)} operations that generate the tree.

2. Draw the tree after the following sequence of operations: \texttt{insert(6)}, \texttt{insert(5)}, \texttt{remove(3)}.

Sample Solution

1. (i) \texttt{insert(8)}, \texttt{insert(3)}, \texttt{insert(12)}, \texttt{insert(10)}
 (ii) \texttt{insert(8)}, \texttt{insert(12)}, \texttt{insert(3)}, \texttt{insert(10)}
 (iii) \texttt{insert(8)}, \texttt{insert(12)}, \texttt{insert(10)}, \texttt{insert(3)}

2. After \texttt{insert(6)} and \texttt{insert(5)}:

After \texttt{remove(3)}:
Exercise 2: Binary Search Trees II

(a) Describe a function that takes a binary search tree B and a key x as input and generates the following output:

- If there is an element v in B with $v.key = x$, return v.
- Otherwise, return the pair (u, w) where u is the tree element with the next smaller key and w is the element with the next larger key. It should be $u = None$ if x is smaller than any key in the tree and $w = None$ if x is larger than any key in the tree.

For your description you can use pseudo code or a sufficiently detailed description in English. Analyze the runtime of your function.

(b) Describe a function which returns the depth of a binary search tree and analyze the runtime.

(c) Describe a function that for a given binary search tree with n nodes and a given $k \leq n$ returns a list with the k smallest keys from the tree. Analyze the runtime.

Sample Solution

(a) Algorithm 1 return-closest(x)

```
v ← find(x)
if v ≠ None then
    return v
else
    insert(x)
    (p, s) ← (pred(x), succ(x))
    delete(x)
    return (p, s)
```

All subprocedures that we call (find, insert, pred, succ) are known from the lecture and take $O(d)$ with d being the depth of the tree. So the overall runtime is $O(d)$.

(b) We can do a recursive traversal of the tree where we keep track of the current recursion depth. Then a call of depth(r) on the root r of the BST returns its depth.

Algorithm 2 depth(v)

```
if v = None then
    return -1  ▷ depth of a childless node must be 0, hence we define the depth of None as -1
else return max(depth(v.left)+1, depth(v.right)+1)
```

The runtime corresponds to the runtime of the traversal of the whole tree which is $O(n)$ as we have just one recursive call for each node and each recursive call costs $O(1)$ (c.f., pre-, in-, post-order traversal algorithms given in the lecture).

As an alternative solution, we can run a BFS which takes $O(n)$. If v is the node visited last by the BFS, do
Algorithm 3 `traverse-up(v)`

```python
    d ← 0
    while v.parent ≠ None do
        d ← d + 1
        v ← v.parent
    return d
```

This takes $O(d)$ where d is the depth of the tree. Since $d \leq n$ the overall runtime is $O(n+d) = O(n)$.

(c) Initialize an empty list K. We roughly do the following. Make an in-order traversal of the tree and each time visiting a node, add it to K. Stop if $|K| \geq k$. The following pseudocode formalizes this.

Algorithm 4 `inorder_variant(node)`

 Diablo! Assume list K is given globally, initially empty.

```python
    if node ≠ None then
        inorder_variant(node.left)
        if |K| ≥ k then
            return
        K.append(node.key)
        inorder_variant(node.right)
```

The runtime is $O(d+k)$ where d is the depth of the tree. We prove this in the following.

Let K be the set of k nodes representing the k smallest keys in the BST. Obviously, the in-order traversal must visit all nodes in K once. In accordance with the lecture a call of `inorder_variant(root)` adds all keys in ascending order to K.

Let A be the set of nodes in the BST which are not in K but in which a recursive call will be made. Since the recursion is aborted (with the `return` statement) after reporting k nodes, the set A contains exactly the nodes which are ancestors of a node in K, but are not in K themselves. Since the runtime of a single recursive call (neglecting subcalls) is (1) the total runtime is $O(|A| + |K|)$.

By definition we have $|K| = k$, so it remains to determine the size of A. We claim that all nodes in A are on a path from the root to a leaf, that is, $|A| \leq d$. This is the case if there do not exist two nodes in A so that neither is an ancestor of the other.

For a contradiction, suppose that two such nodes u, v exist so that neither u is ancestor of v nor vice versa. Assume (without loss of generality) that `key(u) ≤ key(v)`. That means u is in the left and v is in the right subtree of some common ancestor a of u and v.

By definition v has a node $w ∈ K$ in its subtree. Since v is in the right subtree and u is in the left subtree of a, we have `key(u) ≥ key(v)` and w has a higher in-order-position. But then we would have $u ∈ K$ as well, a contradiction to $u ∈ A$.