University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn

Algorithms and Data Structures Winter Term 2020/2021 Sample Solution Exercise Sheet 10

Exercise 1: Dijkstras' Algorithm

Execute Dijkstras' Algorithm on the following weighted, directed graph, starting at node s. Into the table further below, write the distances from each node to s that the algorithm stores in the priority queue after each iteration.

	2		4 3 4 4 4	\rightarrow d 3 \rightarrow c	1 5 2		6	g	
Initialization		S	a	b	с	d	е	f	g
$\delta(s, \cdot) =$		0	∞	∞	∞	∞	∞	∞	∞
1. Step $(u = s)$ $\delta(s, \cdot) =$		s	a	b	С	d	е	f	g
2. Step $(u = \delta(s, \cdot) =$)	s	a	b	с	d	е	f	g
3. Step $(u = \delta(s, \cdot) =$)	s	a	b	с	d	e	f	g
$\overline{ \begin{array}{c} \text{4. Step } (u = \\ \delta(s, \cdot) = \end{array} } $)	s	a	b	с	d	е	f	g
5. Step $(u = \delta(s, \cdot) =$)	s	a	b	с	d	е	f	g
6. Step $(u = \delta(s, \cdot) =$)	s	a	b	с	d	е	f	g
7. Step $(u = \delta(s, \cdot) =$)	s	a	b	с	d	е	f	g
8. Step $(u = \delta(s, \cdot) =$)	S	a	b	с	d	е	f	g

Initialisation	\mathbf{S}	a	b	с	d	e	f	g
$\delta(s,\cdot) =$	0	∞						
1. Step $(u = s)$	\mathbf{s}	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	4	∞	8	∞	∞	∞
2. Step $(u = a)$	\mathbf{S}	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	∞	8	∞	∞	∞
3. Step $(u = b)$	s	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	7	6	∞	∞	∞
4. Step $(u = d)$	\mathbf{S}	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	7	6	∞	∞	∞
5. Step $(u = c)$	s	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	7	6	9	12	∞
6. Step $(u = e)$	s	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	7	6	9	11	15
7. Step $(u = f)$	s	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	7	6	9	11	12
8. Step $(u = g)$	\mathbf{S}	a	b	с	d	е	f	g
$\delta(s,\cdot) =$	0	2	3	7	6	9	11	12

Sample Solution

Exercise 2: Currency Exchange

Consider *n* currencies w_1, \ldots, w_n . The exchange rates are given in an $n \times n$ -matrix *A* with entries a_{ij} $(i, j \in \{1, \ldots, n\})$. Entry a_{ij} is the exchange rate from w_i to w_j , i.e., for one unit of w_i one gets a_{ij} units of w_j .

Given a currency w_{i_0} , we want to find out whether there is a sequence i_0, i_1, \ldots, i_k such that we make profit if we exchange one unit of w_{i_0} to w_{i_1} , then to w_{i_2} etc. until w_{i_k} and then back to w_{i_0} .

- (a) Translate this problem to a graph problem. That is, define a graph and a property which the graph fulfills if and only if there is a sequence of currencies as described above.
- (b) Give an algorithm that decides in $\mathcal{O}(n^3)$ time steps whether there is a sequence of currencies as described above. Explain the correctness and runtime.

Hint: $\log(a \cdot b) = \log a + \log b$.

Sample Solution

(a) We define a weighted graph G = (V, E, w) with $V = \{1, \ldots, n\}$, $E = V^2$ (i.e., the graph is directed and complete) and $w(i, j) = a_{ij}$ (i.e., A is the adjacency matrix). A sequence of currencies as described exists if and only if there is a cycle $(i_0, i_1, \ldots, i_k, i_0)$ such that

$$\prod_{j=0}^{k-1} w(i_j, i_{j+1}) \cdot w(i_k, i_0) > 1 .$$
(1)

(b) In the adjacency matrix, we replace a_{ij} by $-\log a_{ij}$. That is, we define a graph G = (V, E, w') with V and E as before and $w'(i, j) = -\log w(i, j)$. We run Bellman-Ford on G' with source i_0 .

This algorithm checks if G' contains a negative cycle, i.e., nodes i_0, \ldots, i_k with

$$\sum_{j=0}^{k-1} w'(i_j, i_{j+1}) + w'(i_k, i_0) < 0$$

$$\iff \sum_{j=0}^{k-1} -\log w(i_j, i_{j+1}) - \log w(i_k, i_0) < 0$$

$$\iff \sum_{j=0}^{k-1} \log w(i_j, i_{j+1}) + \log w(i_k, i_0) > 0$$

$$\iff \log \left(\prod_{j=0}^{k-1} w(i_j, i_{j+1}) \cdot w(i_k, i_0) \right) > 0$$

$$\iff \prod_{j=0}^{k-1} w(i_j, i_{j+1}) \cdot w(i_k, i_0) > 1.$$

So the algorithm checks property (1) from part (a). The runtime of Bellman-Ford is $\mathcal{O}(|V| \cdot |E|)$. With |V| = n and $|E| = n^2$ we obtain a runtime of $\mathcal{O}(n^3)$.