Exercise 1: Amortized Analysis (10 Points)

Consider a binary min-heap data structure that supports the two operations \texttt{insert} and \texttt{delete-min}. The heap is initially empty and we assume that its number of elements never exceeds \(n \).

(a) Use the \textit{accounting} method to show that we can consider the amortized cost of \texttt{insert} to be \(O(\log n) \) and the amortized cost of \texttt{delete-min} to be \(O(1) \). (3 Points)

(b) Show the statement from part (a), this time using the \textit{potential function} method. (5 Points)

(c) We would like to amortize the costs differently such that the amortized cost of \texttt{insert} is \(O(1) \) and the amortized cost of \texttt{delete-min} is \(O(\log n) \). Either define a feasible \textit{potential function} that yields these amortized costs or argue why this is not possible. (2 Points)

Exercise 2: Union Find - Linked List Implementation (8 Points)

In the lecture, we have seen a linked list implementation where each linked list has a pointer to the first and last element. Describe an alternative implementation that uses only one of these pointers. Your scheme should still allow for the union-by-size heuristic and should not increase the asymptotic running time of the operations.

Exercise 3: Union Find - Disjoint-Set Forests (8 Points)

(a) Give a sequence of \(m \) \texttt{make-set}, \texttt{union}, and \texttt{find} operations, \(n \) of which are \texttt{make-set} operations, that takes \(\Omega(m \log n) \) time when we use union by rank only. (3 Points)

(b) Suppose that we wish to add the operation \texttt{print-set}, which is given a node \(x \) and prints all the members of \(x \)'s set, in any order. Show how to add this feature to the disjoint-set forest implementation such that \texttt{print-set} takes time linear in the number of members of \(x \)'s set and the asymptotic running times of the other operations are unchanged. Assume that we can print each member of the set in \(O(1) \) time. (5 Points)