University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger, P. Schneider

Algorithm Theory

Exercise Sheet 7

Due: Tuesday, 22nd of December 2020, 4 pm

Exercise 1: Global Min-Cut

Given a simple, undirected graph G = (V, E) and a subset $A \subset V$ with $A \neq \emptyset$ and $A \neq V$, we call the number of edges between A and $V \setminus A$ the *size* of the cut $(A, V \setminus A)$. A min-cut of G is a cut of minimum size.

Give an algorithm that computes the size of a min-cut of G in time $O(|E| \cdot |V|^2)$. Explain why the algorithm is correct and analyze the runtime.

Exercise 2: Scheduling

Assume there are n students s_1, \ldots, s_n . Each student has finished some individual project and now has to present the results to some professors. There are k professors p_1, \ldots, p_k . Each professor p_i hands in a list $L_i \subseteq \{s_1, \ldots, s_n\}$ of students for whose projects he/she is an expert. Each professor p_i is willing to attend at most a_i presentations.

The exam regulations require that at each presentation, x professors that are experts on the topic are present.

- (a) Describe a polynomial-time algorithm that computes an assignment of the professors to the student's presentations such that the given constraints are fulfilled, or reports that no such assignment exists. (6 Points)
- (b) As there is a shortage of professors, the university loosens the requirements such that among the x professors that need to be present at each presentation, at least y need to be an expert on the topic, for some y < x. Describe how to construct a feasible schedule in this case. (6 Points)

(12 Points)

(8 Points)