Exercise 1: Matching vs Vertex Cover

Given an undirected Graph $G = (V, E)$, a vertex cover of G is a set of nodes $S \subseteq V$ such that for all $\{u, v\} \in E$, we have $\{u, v\} \cap S \neq \emptyset$. A minimum vertex cover is a vertex cover of minimum size.

a) Show that for a maximum matching M^* and a minimum vertex cover S^* we have $|M^*| \leq |S^*|$.
(2 Points)

Next we want to show that in bipartite graphs, it also holds $|S^*| \leq |M^*|$.

b) Recall that we can solve the maximum bipartite matching problem by reduction to maximum flow. Also recall that if we are given a maximum matching M^* (and thus a maximum flow of the corresponding flow network), we can find a minimum s-t cut by considering the residual graph. Describe how such a minimum cut looks like.

Hint: Consider the set of all nodes which can be reached from an unmatched node on the left side via an alternating path.
(3 Points)

c) Use the above description to show that any bipartite graph G has a vertex cover S^* of size $|M^*|$.
(3 Points)

d) Show that the same thing is not true for general graphs by showing that for every $\varepsilon > 0$, there exists a graph $G = (V, E)$ for which $|S^*| \geq (2 - \varepsilon)|M^*|$.

Hint: First try to find any graph for which $|S^| > |M^*|$.
(2 Points)

Exercise 2: Contention Resolution

Show that for the randomized algorithm for contention resolution from the lecture, the expected time until all processes have been successful is $O(n \log n)$.

(10 Points)