"nr Algorithm Theory -

UNI

Chapter 1
Divide and Conquer

Part Il:
Comparing Orders & Closest Pair of Points

Fabian Kuhn

FREIBURG

Comparing Orders

UNI

FREIBURG

 Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, ...

e Collaborative filtering:
— Predict user taste by comparing rankings of different users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

* Akey problem: compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?

Algorithm Theory Fabian Kuhn 2

Number of Inversions

UNI

FREIBURG

Formal problem:
* Given:array A = |aq, a,,as, ..., a, | of n elements

* Objective: Compute number of inversions |

I=|{0<i<j<n|a >q))

* ExampleeA=[4 ,1,5,2,7,10, 6]

N

5 inversions

* Naive solution:
— Go through all pairs and check if it is an inversion

— Time = O (#pairs) = 0(n?)

Algorithm Theory Fabian Kuhn

Divide and Conquer Solution

UNI
|

FREIBURG

i N,

Af Ar

1. Divide array into 2 equal parts A, and A,
2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ay, a; € A, such that a; > q;

Ay a; a; A,

\/V

inversion not computed recursively

Combine: Count #pairs a; € Ay and a; € A, for which a; > g;

Algorithm Theory Fabian Kuhn 4

Combine Step

UNI
|

FREIBURG

Assume A, and A, are sorted

a; Ag 4 Ar
P At
' J

Idea:
* Maintain pointers i and j to go through the sorted parts

* While going through the sorted parts, we count the number of
inversions between the parts

Invariant:

* At each pointin time, all inversions involving some element left
of i (in A;) or left of j (in A,.) have been counted
— and all others still have to be counted...

Guaranteeing Sorted Order:

* While going through the parts, also merge the parts into one

sorted order (like in Mergesort).
Algorithm Theory Fabian Kuhn 5

Combine Step

Assume A, and A, are sorted

a; Ag 4 Ar
P At
L J

* Pointers i and j, initially pointing to first elements of A, and A,

o |f a; < Cljl
— a; is smallest among the remaining elements
— No inversion of a; and one of the remaining elements
— Do not change count

e |If Clj < a;:
— a; is smallest among the remaining elements

— a; is smaller than all remaining elements in 4,
— Add number of remaining elements in A, to count

* Increment pointer, pointing to the smaller element
Algorithm Theory Fabian Kuhn 6

UNI
|

FREIBURG

Combine Step: Example

UNI

FREIBURG

* Assume A, and A, are sorted

3,58

13

14

18

24|25

3

0 6

19

21

28

32

33

!

l

9 13

14

18119

21

* Count: 0 +7 +7 +6 +3 +3 +3

Algorithm Theory

Fabian Kuhn

Comparing Orders : Summary

UNI
FREIBURG

* We need sub-sequences in sorted order
 Combine step is like merging in merge sort

* ldea: Solve sorting and #inversions at the same time!
1. Partition A into two equal parts A, and A,

2. Recursively compute #inversions and
recursively sort A, and A,

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in A,

Time for divide and combine: O(n)

* Need to go over all */, indices in A, and
all ™/, indices in A,- once.

Algorithm Theory Fabian Kuhn 8

Number of Inversion: Analysis

UNI

FREIBURG

Recurrence relation:
Tn)<2-T(n/2)+c-n,

Same recurrence relation as for mergesort:

T(n) =0(n-logn)

Algorithm Theory Fabian Kuhn

T(1) <c

Geometric divide-and-conquer

UNI

FREIBURG

Closest Pair Problem: Given a set S of n points, find a pair of
points with the smallest distance.

Naive solution:
* Go over all pairs of points, compute distance, take minimum

* Time: 0(n?)

Algorithm Theory Fabian Kuhn

10

UNI

Divide-and-Conquer Solution

FREIBURG

Sort points by x-coordinate
Divide: Divide S into two equal sized sets S, und §,.
Conquer: d, = mindist(S,) d, = mindist(S,)
Combine: d,. = min{d(a,b) | a € Sy,b € S, }

return min{d,, d,, d,,}

wNREO

Remark: only need d,

® ° if dﬁ- < min{d{), dr}
5 d#r
.6. —t—o o%_

Algorithm Theory Fabian Kuhn 11

Divide-and-conquer solution

1. Divide: Divide S into two equal sized sets S, und §,.

2. Conquer: d, = mindist(S,) d, = mindist(S,)

3. Combine: d,. = min{d(a,b) | a € S;,b € S, }
return min{d,, d,, d,,}

Computation of d,,. if dy,, < min{d,,d, }

S ()

— ° i
d = min{d,, d,} :

Sy i.i..i.l

Algorithm Theory Fabian Kuhn

UNI
|

FREIBURG

Combine step

UNI
|

FREIBURG

S ® .P4
o: :
: : °
° : oP2 oP3 .
@
° ?1
() d o
. : v ' A
S, P ® S, d

d d v

d = min{d,, dr}

Algorithm Theory Fabian Kuhn

A

v

13

Combine step

UNI
FREIBURG

1. Consider only points within distance < d of the bisection
line, in the order of increasing y-coordinates.

2. For each point p consider all points g on the other side which
are within y-distance less than d

3. There are at most 4 such points.

&

1 _—

I

I
---I -

r

Algorithm Theory Fabian Kuhn 14

Implementation

UNI

* |Initially sort the points in S in order of increasing x-coordinates

* While computing closest pair, also sort S according to y-coord.
— Partition S into S, and S,., solve and sort sub-problems recursively

— Merge to get sorted S according to y-coordinates

— Center points: points within x-distance d = min{d,, d, } of center

— Go through center points in S in order of incr. y-coordinates

e Each point only has to be compared to 7 next center points in the sorted
order of all center points
(when including the center points on the same side)

A
v

Algorithm Theory Fabian Kuhn d 15

FREIBURG

UNI
|

FREIBURG

Running Time

Recurrence relation:

T(n)=2-T(n/2)+c-n, T(1) <c
Solution:

e Same as for computing number of number of inversions,
mergesort (and many others...)

T(n) = 0(n-logn)

Algorithm Theory Fabian Kuhn 16

