
Algorithm Theory

Chapter 1

Divide and Conquer

Part III:
Operations on Polynomials, Karatsuba Alg.

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Polynomials

Real polynomial 𝒑 in one variable 𝒙:

𝑝 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 + … + 𝑎1𝑥

1 + 𝑎0

Coefficients of 𝑝: 𝑎0, 𝑎1, … , 𝑎𝑛−1 ∈ ℝ

Degree of 𝑝: largest power of 𝑥 in 𝑝 (𝑛 − 1 in the above case)

Example:

𝑝(𝑥) = 3𝑥3 – 15𝑥2 + 18𝑥

Set of all real-valued polynomials in 𝑥: ℝ[𝑥] (polynomial ring)



Algorithm Theory Fabian Kuhn 3

Operations on Polynomials

• Given: Polynomials 𝑝, 𝑞 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +⋯+ 𝑎1𝑥 + 𝑎0
𝑞 𝑥 = 𝑏𝑛−1𝑥

𝑛−1 + 𝑏𝑛−2𝑥
𝑛−2 +⋯+ 𝑏1𝑥 + 𝑏0

• How expensive are basic operations on these polynomials?
– Evaluation: What is 𝑝 𝑥0 for a given value 𝑥0 ∈ ℝ?

– Addition: Compute the polynomial 𝑝 𝑥 + 𝑞 𝑥

– Multiplication: Compute the polynomial 𝑝 𝑥 ⋅ 𝑞 𝑥

• Computational Models
– RAM (random access machine): standard model for algorithm analysis

• Reading / writing one memory cell costs 1 time unit

• Basic arithmetic op. on integers cost 1 time unit (if integers fit in a mem. cell)

– Real RAM:

• Also basic arithmetic operations on real numbers cost 1 time unit

• We will now use this assumption 

We will focus on 
multiplication.



Algorithm Theory Fabian Kuhn 4

Operations: Evaluation

• Given: Polynomial 𝑝 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +⋯+ 𝑎1𝑥 + 𝑎0

• Horner’s method for evaluation at specific value 𝑥0:

𝑝 𝑥0 = … 𝑎𝑛−1𝑥0 + 𝑎𝑛−2 𝑥0 + 𝑎𝑛−3 𝑥0 +⋯+ 𝑎1 𝑥0 + 𝑎0

• Pseudo-code:

𝑝 ≔ 𝑎𝑛−1; 𝑖 ≔ 𝑛 − 1;
while (𝑖 > 0) do

𝑖 ≔ 𝑖 − 1;
𝑝 ≔ 𝑝 ⋅ 𝑥0 + 𝑎𝑖

• Running time: 𝑂(𝑛)



Algorithm Theory Fabian Kuhn 5

Operations: Addition

• Given: Polynomials 𝑝, 𝑞 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +⋯+ 𝑎1𝑥 + 𝑎0
𝑞 𝑥 = 𝑏𝑛−1𝑥

𝑛−1 + 𝑏𝑛−2𝑥
𝑛−2 +⋯+ 𝑏1𝑥 + 𝑏0

• Compute sum 𝑝 𝑥 + 𝑞 𝑥 :

𝑝 𝑥 + 𝑞 𝑥
= 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 + 𝑏𝑛−1𝑥
𝑛−1 +⋯+ 𝑏0

= 𝑎𝑛−1 + 𝑏𝑛−1 𝑥𝑛−1 +⋯+ 𝑎1 + 𝑏1 𝑥 + (𝑎0 + 𝑏0)

• Running time: 𝑂(𝑛)



Algorithm Theory Fabian Kuhn 6

Operations: Multiplication

• Given: Polynomials 𝑝, 𝑞 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0

𝑞 𝑥 = 𝑏𝑛−1𝑥
𝑛−1 +⋯+ 𝑏1𝑥 + 𝑏0

• Product 𝑝 𝑥 ⋅ 𝑞(𝑥):

𝑝 𝑥 ⋅ 𝑞 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎0 ⋅ 𝑏𝑛−1𝑥

𝑛−1 +⋯+ 𝑏0
= 𝑐2𝑛−2𝑥

2𝑛−2 + 𝑐2𝑛−3𝑥
2𝑛−3 +⋯+ 𝑐1𝑥 + 𝑐0

• Obtaining 𝑐𝑘: what products of monomials have degree 𝑖?

For 0 ≤ 𝑘 ≤ 2𝑛 − 2: 𝑐𝑘 =෍

𝑖=0

𝑘

𝑎𝑖𝑏𝑘−𝑖

where 𝑎𝑖 = 𝑏𝑖 = 0 for 𝑖 ≥ 𝑛.

• Running time naïve algorithm: 𝑂 𝑛2



Algorithm Theory Fabian Kuhn 7

Faster Multiplication?

• Multiplication is slow Θ 𝑛2

• Try divide-and-conquer to get a faster algorithm

• Assume: degree is 𝑛 − 1, 𝑛 is even

• Divide polynomial 𝑝 𝑥 = 𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎0 into 2 

polynomials of degree Τ𝑛 2 − 1:

𝑝0 𝑥 = 𝑎 ൗ𝑛 2−1
𝑥 ൗ𝑛 2−1 +⋯+ 𝑎0

𝑝1 𝑥 = 𝑎𝑛−1𝑥
ൗ𝑛 2−1 +⋯+ 𝑎 ൗ𝑛 2

𝑝 𝑥 = 𝑝1 𝑥 ⋅ 𝑥 ൗ𝑛 2 + 𝑝0 𝑥

• Similarly: 𝑞 𝑥 = 𝑞1 𝑥 ⋅ 𝑥 Τ𝑛 2 + 𝑞0 𝑥



Algorithm Theory Fabian Kuhn 8

Use Divide-And-Conquer

• Divide:

𝑝 𝑥 = 𝑝1 𝑥 ⋅ 𝑥 ൗ𝑛 2 + 𝑝0 𝑥 , 𝑞 𝑥 = 𝑞1 𝑥 ⋅ 𝑥 ൗ𝑛 2 + 𝑞0 𝑥

• Multiplication:
𝑝 𝑥 𝑞 𝑥 = 𝑝1 𝑥 𝑞1 𝑥 ⋅ 𝑥𝑛 +

𝑝0 𝑥 𝑞1 𝑥 + 𝑝1 𝑥 𝑞0(𝑥) ⋅ 𝑥 ൗ𝑛 2 + 𝑝0 𝑥 𝑞0(𝑥)

• 4 multiplications of degree Τ𝑛 2− 1 polynomials:

𝑇 𝑛 = 4𝑇 ൗ𝑛 2 + 𝑂 𝑛

• Leads to 𝑇 𝑛 = Θ 𝑛2 like the naive algorithm…
– follows immediately by using the master theorem



Algorithm Theory Fabian Kuhn 9

More Clever Recursive Solution

• Recall that
𝑝 𝑥 𝑞 𝑥 = 𝑝1 𝑥 𝑞1 𝑥 ⋅ 𝑥𝑛 +

𝑝0 𝑥 𝑞1 𝑥 + 𝑝1 𝑥 𝑞0(𝑥) ⋅ 𝑥 ൗ𝑛 2 + 𝑝0 𝑥 𝑞0(𝑥)

• Compute 𝑟 𝑥 = 𝑝0 𝑥 + 𝑝1 𝑥 ⋅ 𝑞0 𝑥 + 𝑞1 𝑥 :

Algorithm:

• Compute (recursively):

• 𝑝 𝑥 𝑞 𝑥 = ⋅ 𝑥𝑛 + 𝑎𝑎
𝑎
− − ⋅ 𝑥 Τ𝑛 2 +

𝑟 𝑥 = 𝑝0 𝑥 𝑞0 𝑥 + 𝑝0 𝑥 𝑞1 𝑥 + 𝑝1 𝑥 𝑞0 𝑥 + 𝑝1 𝑥 𝑞1(𝑥)

𝑝0 𝑥 ⋅ 𝑞0 𝑥 𝑝1 𝑥 ⋅ 𝑞1 𝑥

𝑟 𝑥 = 𝑝0 𝑥 + 𝑝1 𝑥 ⋅ 𝑞0 𝑥 + 𝑞1 𝑥



Algorithm Theory Fabian Kuhn 10

Karatsuba Algorithm

• Recursive multiplication:

𝑟 𝑥 = 𝑝0 𝑥 + 𝑝1 𝑥 ⋅ 𝑞0 𝑥 + 𝑞1 𝑥

𝑝 𝑥 𝑞 𝑥 = 𝑝1 𝑥 ⋅ 𝑞1 𝑥 ⋅ 𝑥𝑛

+ 𝑟 𝑥 − 𝑝0 𝑥 𝑞0 𝑥 − 𝑝1 𝑥 𝑞1(𝑥) ⋅ 𝑥 ൗ𝑛 2

+ 𝑝0 𝑥 ⋅ 𝑞0 𝑥 ൗ1 1

• Recursively do 3 multiplications of degr. Τ𝑛 2− 1 -polynomials

𝑇 𝑛 = 3𝑇 ൗ𝑛 2 + 𝑂(𝑛)

• Gives: 𝑇 𝑛 = 𝑂 𝑛1.58496… (see Master theorem)

= log2 3= log2 3


