Algorithm Theory

Chapter 3
Dynamic Programming

Part lll:
The Knapsack Problem

Fabian Kuhn

UNI

FREIBURG



Knapsack

UNI

FREIBURG

* nitems1,...,n, each item has weight w; and value v;
* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at
most W and total value is maximized:

maxz V;
i€ES
s.t. SE€{1,...,n}and Ewi <Ww
iES

* E.g.:jobs of length w; and value v;, server available for W
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory Fabian Kuhn



Recursive Structure?

UNI

FREIBURG

* Optimal solution: O

e Ifne& O0:0PT(n) =0PT(n—1)

e Whatifn € 07

— Taking n gives value v,

— But, n also occupies space w,, in the bag (knapsack)

— There is space for W — w,, total weight left!

OPT(n) = v, + optimal solution with first n — 1 items

Algorithm Theory

and knapsack of capacity W — w,,

[

This is not just
OPT(n — 1).

Fabian Kuhn



A More Complicated Recursion

UNI
f

FREIBURG

OPT(k, x): value of optimal solution with items 1, ..., k
and knapsack of capacity x

opt. solution when using item k,
only possible if x = wy,

OPT(k, x) = OPT(k — 1,x), OPT(k —1,x — wy)
(k, x) = max{ (' X), vy + ( X —wg)}

Recursion:

opt. solution when remaining
not using item k capacity
Initialization: Number of subproblems:
« OPT(0,x) =0 * arbitrary weights: < n - 2"

_ noitems = value 0 — In this case, the problem is NP-hard.

* integer weights:n - W
— 2 cases per subproblem

« OPT(k,0)=0
— capacity 0 = value 0

= running time: O0(n - W)

Algorithm Theory Fabian Kuhn 4



Dynamic Programming Algorithm

UNI

FREIBURG

Set up table for all possible OPT(k, x)-values
* Assume that all weights w; are integers!

W N = O

n

Row k, column x:

OPT(k, x)

/

0 1 2 3 X
olofojo|ofo]ofo]|Q
0
0 —wy ||
0 e ;
I I T
0

0

Algorithm Theory Fabian Kuhn



Example

UNI

FREIBURG

« 8items: (3,2),(2,4),(4,1),(5,6),(3,3),
Knapsack capacity: 12

94,3% (5,4),(6,6)

weight value

 OPT(k,x) = max{OPT(k —1,x),0PT(k —1,x — wy) + v} }
1 2 3 4 5 6 7 8 9 101112

010

2

2

2

2

2

2

2

2

\

6

6

6

6

6

NG BN

—_
—»O’ NN

| O

o | O

6

7

7

7

7

10

10

12

12

12

10

10

13

13

13

—1>

10/10

O 1O |OC|O|O|O

10

10

10

\

10

13

13

13

13

13

W N U AW N R

ol ol ol ol El U o

0

NG IS NSO BN NSO | (NG NS

NG IO IS IS NN

NI N N3O

NN N3O

10

10

10

13

13

T4
W

Optimal solution:
ltems 2, 4, and 7

Total weight:
24+54+5=12

Total value:
4+6+4=14

Algorithm Theory

Fabian Kuhn

6



Running Time of Knapsack Algorithm

UNI

FREIBURG

 Size of table: O(n - W)
« Time per table entry: 0(1) - overall time: O(n - W)

 Computing solution (set of items to pick):
Follow < n arrows = 0(n) time (after filling table)

* Note: Time depends on W —> can be exponential in n...

* And it only works if all weights are integers

— ...or can be scaled so that they are integers

Algorithm Theory Fabian Kuhn



UNI
FREIBURG

Knapsack with Integer Values

* Let’s also consider the case that weights are arbitrary and the
values are integers...

* Assume that all item values are integers € {1, ..., V}

e Again distinguish two cases depending on if the last item is
part of an optimal solution or it isn’t.

Recursive Function: _ _ ;
min. possible weight

OPT(k, xlk

onlyitems 1, ..., k total value exactly x

Algorithm Theory Fabian Kuhn 8



Knapsack with Integer Values

UNI
f

FREIBURG

* Assume that all item values are integers € {1, ..., V}

Recursive Function:

« OPT(k, x): min. possible weight to achieve exactly value x
with only items 1, ..., k

* Recursive definition of function OPT(k, x)

OPT(k,x) = min{OPT(k — 1,x),w; + OPT(k — 1,x — v},)}
OPT(k,0) = 0 W

OPT(0,x) = oo forx > 0 only possible if x = v,

e Atthe end, find maximum x such that OPT(n,x) < W

* Number of subproblems < n? - V = running time O(n2 : V)
— Max. required x-value: x < YL vy <n-V

Algorithm Theory Fabian Kuhn 9



Dynamic Programming : Summary

Dynamic Programming:

* Use recursion together with memorization

e Applicable if #recursive subproblems is moderately small

Additional Applications of Dynamic Programming:

 The idea can be applied to a wide range of problems

 Examples, beyond what we already saw:

Shortest path algorithms such as Bellman-Ford and Dijkstra can be
seen as applications of DP

String comparison & matching problems such as edit distance,
approximate text search, Biological sequence alignment problems, etc.

Further string problems: longest common subsequence, etc.
Hidden Markov model analysis
And many more ...

Algorithm Theory Fabian Kuhn 10

UNI
f

FREIBURG



