Algorithm Theory

Chapter 4
Amortized Analysis

Part I:
Basics & Accounting Method

Fabian Kuhn

UNI

FREIBURG



Amortization

UNI
f

FREIBURG

* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* t;: execution time of operation o;
e T:=1t4+t, + -+ t,: total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory Fabian Kuhn 2



UNI

Analysis of Algorithms

FREIBURG

The best case usually does not occur

* Bestcase \ and is not really interesting.

The standard way of algorithm analysis.

* Worst case \

Assume that the input is random
* Average case according to some given distribution.

Average cost per operation in a

worst case sequence of operations
e aform of worst-case analysis for
sequences of operations

e Amortized worst case

Algorithm Theory Fabian Kuhn 3



Example 1: Augmented Stack

UNI

FREIBURG

Stack Data Type: Operations
 S.push(x) :inserts x on top of stack
* S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Operation
 S.multipop(k) : remove and return top k elements
e Complexity: O (k)

What is the amortized complexity of these operations?

Intuitively: amortized cost per operation is constant
 We can only delete items from S that were previously pushed to S.
* The total time for deleting is not more than for pushing.

Algorithm Theory Fabian Kuhn



Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
 Sequence of operationsi =1,2,3,...,n
* Actual cost of op. i: ¢;

* Amortized cost of op. i is a; if for every possible seq. of op.,
n n

T = ti < a;
=1 =1

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actual cost t; = 0(1)
e S.multipop(k) : actual cost t; = 0(k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push

Algorithm Theory Fabian Kuhn 5



UNI

Augmented Stack: Amortized Cost

FREIBURG

Amortized Cost
DYDY
i i

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actualcostt; < c
« S.multipop(k) :actualcostt; < c-k

n operations: p push operations, the rest are pop and multipop op.

* p < npush op. = total pushcost< c-p

* total #deleted elem. < p = total pop/multipop cost < c - p
= totalcost< 2-c-p
2cp 2cp

* Average cost per operation = T < T = 2cC

Algorithm Theory Fabian Kuhn 6



Example 2: Binary Counter

UNI
f

FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000 ~
1 00001 4 1
2 000104 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 * 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory Fabian Kuhn



Accounting Method

UNI
f

FREIBURG

Observation:
* Eachincrement flips exactlyoneOintoal

0010001111 = 0010010000

Idea:

* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x

* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory Fabian Kuhn



Accounting Method

amortized cost

UNI

FREIBURG

Op. | Counter | Cost To Bank | From Bank Net Cost Balance
00000 0
1 /100001 1 1 0 2 1
2 (00010 2 1 1 2 1
3 100011 1 1 0 2 2
4 100100 3 1 2 2 1
5 00101 1 1 0 2 2
6 00110 2 1 1 2 2
7 100111 1 1 0 2 3
8 {01000 il 1 3 2 1
9 101001 1 1 0 2 2
10 101010 2 1 1 2 2

C+T - F = A B>0

B=0 — A>C

Algorithm Theory

Fabian Kuhn




