
Algorithm Theory

Chapter 4

Amortized Analysis

Part I:
Basics & Accounting Method

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Amortization

• Consider sequence 𝑜1, 𝑜2, … , 𝑜𝑛 of 𝑛 operations
(typically performed on some data structure 𝐷)

• 𝒕𝒊: execution time of operation 𝑜𝑖
• 𝑻 ≔ 𝒕𝟏 + 𝒕𝟐 +⋯+ 𝒕𝒏: total execution time

• The execution time of a single operation might

vary within a large range (e.g., 𝑡𝑖 ∈ [1, 𝑂 𝑖])

• The worst case overall execution time might still be small

 average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory Fabian Kuhn 3

Analysis of Algorithms

• Best case

• Worst case

• Average case

• Amortized worst case

The best case usually does not occur
and is not really interesting.

The standard way of algorithm analysis.

Assume that the input is random
according to some given distribution.

Average cost per operation in a
worst case sequence of operations
• a form of worst-case analysis for

sequences of operations

Algorithm Theory Fabian Kuhn 4

Example 1: Augmented Stack

Stack Data Type: Operations

• 𝑆. push(𝑥) : inserts 𝑥 on top of stack

• 𝑆.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: 𝑂 1

Additional Operation

• 𝑺.multipop(𝒌) : remove and return top 𝑘 elements

• Complexity: 𝑂 𝑘

What is the amortized complexity of these operations?

Intuitively: amortized cost per operation is constant
• We can only delete items from 𝑆 that were previously pushed to 𝑆.
• The total time for deleting is not more than for pushing.

Algorithm Theory Fabian Kuhn 5

Augmented Stack: Amortized Cost

Amortized Cost

• Sequence of operations 𝑖 = 1, 2, 3,… , 𝑛

• Actual cost of op. 𝑖: 𝒕𝒊
• Amortized cost of op. 𝑖 is 𝒂𝒊 if for every possible seq. of op.,

𝑇 =෍

𝑖=1

𝑛

𝑡𝑖 ≤෍

𝑖=1

𝑛

𝑎𝑖

Actual Cost of Augmented Stack Operations

• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝑡𝑖 = 𝑂(1)

• 𝑆.multipop 𝑘 : actual cost 𝑡𝑖 = 𝑂 𝑘

• Amortized cost of all three operations is constant
– The total number of “popped” elements cannot be more than the total

number of “pushed” elements: cost for pop/multipop ≤ cost for push

Algorithm Theory Fabian Kuhn 6

Augmented Stack: Amortized Cost

Amortized Cost

𝑇 =෍

𝑖

𝑡𝑖 ≤෍

𝑖

𝑎𝑖

Actual Cost of Augmented Stack Operations

• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝒕𝒊 ≤ 𝒄

• 𝑆.multipop 𝑘 : actual cost 𝒕𝒊 ≤ 𝒄 ⋅ 𝒌

𝒏 operations: 𝑝 push operations, the rest are pop and multipop op.

• 𝑝 ≤ 𝑛 push op. ⟹ total push cost ≤ 𝑐 ⋅ 𝑝

• total #deleted elem. ≤ 𝑝 ⟹ total pop/multipop cost ≤ 𝑐 ⋅ 𝑝
⟹ total cost ≤ 2 ⋅ 𝑐 ⋅ 𝑝

• Average cost per operation ≤
𝟐𝒄𝒑

𝒏
≤
𝟐𝒄𝒑

𝒑
= 𝟐𝒄

Algorithm Theory Fabian Kuhn 7

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:
Operation Counter Value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111 1

8 01000 4

9 01001 1

10 01010 2

11 01011 1

12 01100 3

13 01101 1

Algorithm Theory Fabian Kuhn 8

Accounting Method

Observation:

• Each increment flips exactly one 0 into a 1

00100𝟎1111 ⟹ 00100𝟏0000

Idea:

• Have a bank account (with initial amount 0)

• Paying 𝑥 to the bank account costs 𝑥

• Take “money” from account to pay for expensive operations

Applied to binary counter:

• Flip from 0 to 1: pay 1 to bank account (cost: 2)

• Flip from 1 to 0: take 1 from bank account (cost: 0)

• Amount on bank account = number of ones
We always have enough “money” to pay!

Algorithm Theory Fabian Kuhn 9

Accounting Method

Op. Counter Cost To Bank From Bank Net Cost Balance

0 0 0 0 0 0

1 0 0 0 0 1 1 1 0 2 1

2 0 0 0 1 0 2 1 1 2 1

3 0 0 0 1 1 1 1 0 2 2

4 0 0 1 0 0 3 1 2 2 1

5 0 0 1 0 1 1 1 0 2 2

6 0 0 1 1 0 2 1 1 2 2

7 0 0 1 1 1 1 1 0 2 3

8 0 1 0 0 0 4 1 3 2 1

9 0 1 0 0 1 1 1 0 2 2

10 0 1 0 1 0 2 1 1 2 2

C T F A B ≥ 0+ − =
B ≥ 0 ⟹ A ≥ C

amortized cost

