Algorithm Theory

Chapter 4
Amortized Analysis

Part Il:
Potential Function Method

Fabian Kuhn

UNI

FREIBURG

Potential Function Method

UNI

FREIBURG

* Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

» State of data structure / system: S € § (state space)

Potential function ®:§ - R,

 Operation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (S,: initial state)
— ®; = P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_4

Algorithm Theory Fabian Kuhn

Potential Function Method

Operation i:

LY/

ti = a; +q)i—1 _q)i

actual cost: t; amortized cost: a; = t; + &; — D;_4

Overall cost:

Tzzzn:ti=<zn:ai>+¢o—¢ns<iai

=1 [[

+a,_4
+a,

Algorithm Theory Fabian Kuhn

)+

UNI

FREIBURG

Binary Counter: Potential Method

UNI

FREIBURG

* Potential function:
&: number of ones in current counter

* Clearly, ®y =0and ®; = 0foralli = 0

* Actual cost t;:
= 1 flipfromOto1l
= t; — 1flipsfrom1toO

* Potential difference: ®; —®d;_; =1—-(t; —1) =2 — t;

e Amortizedcost:a; =t; + P; —P;_1 = 2

Algorithm Theory Fabian Kuhn

UNI

Example 3: Dynamic Array

FREIBURG

* How to create an array where the size dynamically adapts to the
number of elements stored?

— e.g., Java “ArrayList” or Python “list”

Implementation:

* Initialize with initial size N,

* Assumptions: Array can only grow by appending new elements
at the end

* If array is full, the size of the array is increased by a factor f > 1

Operations (array of size N):
* read / write: actual cost 0(1)

e append: actual costis O(1) if array is not full, otherwise
the append cost is O(S - N) (new array size)

Algorithm Theory Fabian Kuhn 5

Example 3: Dynamic Array

UNI
f

FREIBURG

Notation:
* n:number of elements stored
 N:currentsize of array

_ _ 1 ifn <N
Cost t; of i*" append operation: t; = {,3 N ifz — N

Claim: Amortized append cost is O(1)

Potential function ®?
* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again

Algorithm Theory Fabian Kuhn 6

Dynamic Array: Potential Function

UNI
FREIBURG

Cost t; of it append operation: ¢; = {,3 -1N EZ i %
n N At the start:
. ® small (® = 0) N=N
L v J — Y0
N=f-n LN n=20
. ® large (¢ > pN) |Weneed:® =0
Let’'stry: d(n,N) =c-(fn—N) + c-N,
c(BN — N) = BN
cB-1)=p
D(n,N) = =P (B — N+ Np)
p B —
C=——
g —1

Algorithm Theory Fabian Kuhn 7

UNI
f

FREIBURG

Dynamic Array: Amortized Cost

; . 1 ifn <N
Cost t; of it" append operation: ¢ { L

{=1B-N ifn=N
B

Potential function: d(n,N) = -1 -(fn— N + Ny)

Amortized cost a; = t; + ®; — P;_4

2

Case 1l (n < N): al—1+— Bn+1)— ﬁn)_1+ﬁ -

B-1
Case2(n = N):t; = pn=[N
ﬁN+— [ﬁ(N+1) ﬁN—(ﬁN N)]

_ 32 _ (R — _ P~

2
Amortized cost < 1 + 51

Algorithm Theory Fabian Kuhn 8

