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Potential Function Method

• Most generic and elegant way to do amortized analysis!
– But, also more abstract than the others…

• State of data structure / system: 𝑆 ∈ 𝒮 (state space)

Potential function 𝚽:𝓢 → ℝ≥𝟎

• Operation 𝒊:
– 𝒕𝒊: actual cost of operation 𝑖

– 𝑺𝒊: state after execution of operation 𝑖 (𝑆0: initial state)

– 𝚽𝒊 ≔ Φ(𝑆𝑖): potential after exec. of operation 𝑖

– 𝒂𝒊: amortized cost of operation 𝑖:

𝒂𝒊 ≔ 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏
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Potential Function Method

Operation 𝒊:

actual cost: 𝑡𝑖 amortized cost: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1

Overall cost:
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Binary Counter: Potential Method

• Potential function:
𝚽:𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐨𝐧𝐞𝐬 𝐢𝐧 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐮𝐧𝐭𝐞𝐫

• Clearly, Φ0 = 0 and Φ𝑖 ≥ 0 for all 𝑖 ≥ 0

• Actual cost 𝑡𝑖: 
 1 flip from 0 to 1

 𝑡𝑖 − 1 flips from 1 to 0

• Potential difference: Φ𝑖 −Φ𝑖−1 = 1 − 𝑡𝑖 − 1 = 2 − 𝑡𝑖

• Amortized cost: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 = 2
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Example 3: Dynamic Array

• How to create an array where the size dynamically adapts to the 
number of elements stored?
– e.g., Java “ArrayList” or Python “list”

Implementation:

• Initialize with initial size 𝑁0
• Assumptions: Array can only grow by appending new elements 

at the end

• If array is full, the size of the array is increased by a factor 𝛽 > 1

Operations (array of size 𝑵):

• read / write: actual cost 𝑂 1

• append: actual cost is 𝑂(1) if array is not full, otherwise
the append cost is 𝑂 𝛽 ⋅ 𝑁 (new array size)
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Example 3: Dynamic Array

Notation:

• 𝑛: number of elements stored

• 𝑁: current size of array

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡𝑖 = ቊ
1 if 𝑛 < 𝑁

𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

Claim: Amortized append cost is 𝑂 1

Potential function 𝚽?

• should allow to pay expensive append operations by cheap ones

• when array is full, Φ has to be large

• immediately after increasing the size of the array, Φ should be 
small again
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Dynamic Array: Potential Function

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡𝑖 = ቊ
1 if 𝑛 < 𝑁

𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

𝑛 𝑁

𝑁 = 𝛽 ⋅ 𝑛
𝑛 = 𝑁

Φ small  (Φ = 0)

Φ large  (Φ ≥ 𝛽𝑁)

Let’s try: Φ 𝑛,𝑁 = 𝑐 ⋅ 𝛽𝑛 − 𝑁 + 𝑐 ⋅ 𝑁0

At the start:

𝑁 = 𝑁0
𝑛 = 0

We need: Φ ≥ 0

𝑐 𝛽𝑁 − 𝑁 ≥ 𝛽𝑁

𝑐 𝛽 − 1 ≥ 𝛽

𝑐 ≥
𝛽

𝛽 − 1

Φ 𝑛,𝑁 =
𝛽

𝛽 − 1
⋅ 𝛽𝑛 − 𝑁 + 𝑁0



Algorithm Theory Fabian Kuhn 8

Dynamic Array: Amortized Cost

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡𝑖 = ቊ
1 if 𝑛 < 𝑁

𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

Potential function:

Amortized cost 𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏

Case 1 (𝒏 < 𝑵): 𝑎𝑖 = 1 +
𝛽

𝛽−1
⋅ 𝛽 𝑛 + 1 − 𝛽𝑛 = 1 +

𝛽2

𝛽−1

Case 2 (𝒏 = 𝑵): 𝑡𝑖 = 𝛽𝑛 = 𝛽𝑁

𝑎𝑖 = 𝛽𝑁 +
𝛽

𝛽−1
⋅ 𝛽 𝑁 + 1 − 𝛽𝑁 − 𝛽𝑁 − 𝑁

= 𝛽𝑁 +
𝛽2

𝛽−1
−

𝛽

𝛽−1
⋅ 𝛽 − 1 𝑁 =

𝛽2

𝛽−1

Φ 𝑛,𝑁 =
𝛽

𝛽 − 1
⋅ 𝛽𝑛 − 𝑁 + 𝑁0

Amortized cost ≤ 1 +
𝛽2

𝛽−1


