
Algorithm Theory

Chapter 5

Data Structures

Part I:
Union Find: Basic Implementation

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Minimum Spanning Trees

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge 𝑒 such that 𝑒 does not close a cycle

1 2

3 4

5

6

8

7

1

3

6

8
9

1

15

2

9 7

6

3



Algorithm Theory Fabian Kuhn 3

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge 𝑒 = 𝑢, 𝑣 :

if 𝒆 does not close a cycle then

add 𝒆 to the current solution

sort edges by weight : 𝑂 𝑚 log 𝑛 time

need to check if 𝑒 closes a cycle
⇓

are 𝑢 and 𝑣 in same conn. comp.?

merge the connected components
containing nodes 𝑢 and 𝑣.

𝑢

𝑣

𝑒



Algorithm Theory Fabian Kuhn 4

Union-Find Data Structure

Also known as Disjoint-Set Data Structure…

Manages partition of a set of elements (a set of disjoint sets)

Operations:

• 𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝒙): create a new set that only contains element 𝑥

• 𝐟𝐢𝐧𝐝(𝒙): return the set containing 𝑥

• 𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚): merge the two sets containing 𝑥 and 𝑦

𝒙𝟏
𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔



Algorithm Theory Fabian Kuhn 5

Implementation of Kruskal Algorithm

1. Initialization:
For each node 𝑣: make_set(𝑣)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. For each edge 𝑒 = {𝑢, 𝑣}:

if 𝐟𝐢𝐧𝐝 𝒖 ≠ 𝐟𝐢𝐧𝐝(𝒗) then

add 𝑒 to the current solution

𝐮𝐧𝐢𝐨𝐧(𝒖, 𝒗)



Algorithm Theory Fabian Kuhn 6

Managing Connected Components

• Union-find data structure can be used more generally to manage 
the connected components of a graph

… if edges are added incrementally

• make_set(𝑣) for every node 𝑣

• find(𝑣) returns component containing 𝑣

• union(𝑢, 𝑣) merges the components of 𝑢 and 𝑣
(when an edge is added between the components)

• Can also be used to manage biconnected components



Algorithm Theory Fabian Kuhn 7

Basic Implementation Properties

Representation of sets:

• Every set 𝑆 of the partition is identified with a representative, 
by one of its members 𝑥 ∈ 𝑆

Operations:

• make_set(𝑥): 𝑥 is the representative of the new set {𝑥}

• find(𝑥): return representative of set 𝑆𝑥 containing 𝑥

• union(𝑥, 𝑦): unites the sets 𝑆𝑥 and 𝑆𝑦 containing 𝑥 and 𝑦 and

returns the new representative of 𝑆𝑥 ∪ 𝑆𝑦



Algorithm Theory Fabian Kuhn 8

Observations

Throughout the discussion of union-find:

• 𝑛: total number of make_set operations

• 𝑚: total number of operations (make_set, find, and union)

Clearly:

• 𝑚 ≥ 𝑛

• There are at most 𝑛 − 1 union operations

Remark:

• We assume that the 𝑛 make_set operations are the first 𝑛
operations
– Does not really matter…



Algorithm Theory Fabian Kuhn 9

Linked List Implementation

Each set is implemented as a linked list:

• representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

• sets: 1,5,8,12,43 , 7,9,15 ; representatives: 5, 9

5 12 8 43 1

9 15 7



Algorithm Theory Fabian Kuhn 10

Linked List Implementation

𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝒙):

• Create list with one element:

time: 𝑶 𝟏

𝐟𝐢𝐧𝐝(𝒙):

• Return first list element:

time: 𝑶(𝟏)

𝑥

𝑦 𝑎 𝑥 𝑏



Algorithm Theory Fabian Kuhn 11

Linked List Implementation

𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚):

• Append list of 𝑦 to list of 𝑥:

Time: 𝑶 𝐥𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐥𝐢𝐬𝐭 𝐨𝐟 𝒚

𝑎 𝑏 𝑥 𝑐 𝑑 𝑒 𝑦∪

𝑎 𝑏 𝑥 𝑐 𝑑 𝑒 𝑦



Algorithm Theory Fabian Kuhn 12

Cost of Union (Linked List Implementation)

Total cost for 𝑛 − 1 union operations can be Θ(𝑛2):

• make_set 𝑥1 , make_set 𝑥2 , … ,make_set(𝑥𝑛),
union 𝑥𝑛−1, 𝑥𝑛 , union 𝑥𝑛−2, 𝑥𝑛−1 , … , union 𝑥1, 𝑥2

• #pointer redirections: 1 + 2 + 3 +⋯+ 𝑛 − 1 = Θ 𝑛2

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

⋯



Algorithm Theory Fabian Kuhn 13

Union-By-Size Heuristic

• In a bad execution, average cost per union can be Θ 𝑛

• Problem: The longer list is always appended to the shorter one

Idea: 

• In each union operation, append shorter list to longer one!

Cost for union of sets 𝑆𝑥 and 𝑆𝑦: 𝑂 min 𝑆𝑥 , 𝑆𝑦

Theorem: The overall cost of 𝑚 operations of which at most 𝑢 ≤ 𝑛
are union operations is 𝑶(𝒎+ 𝒖 ⋅ 𝐥𝐨𝐠𝒏).

• There are at most 𝑛 − 1 union operations

• Amortized and worst-case cost of make_set, find: 𝑂 1

• Amortized cost of union operation: 𝑂 log 𝑛

𝑛: #make_set op.



Algorithm Theory Fabian Kuhn 14

Union-By-Size Heuristic

Theorem: The overall cost of 𝑚 operations of which at most 𝑢 ≤ 𝑛
are union operations is 𝑶(𝒎+ 𝒖 ⋅ 𝐥𝐨𝐠𝒏).

Proof:

• Total cost of make-set & find operations: 𝑂 𝑚

• Total cost of union operations: 𝑂 #pointer redirections

• Consider a fixed element 𝑥

• How often do we redirect the pointer of 𝑥?

• When redirecting the pointer of 𝑥,
the size of the set of 𝑥 at least doubles.
⟹≤ log2 𝑛 pointer redir. for element 𝑥
– But only if 𝑥 ends up in a set of size > 1

• Total union cost: 𝑂 𝑢 ⋅ log 𝑛

𝒙

Kruskal Algorithm:

Sorting edges by weight:
𝑂 𝑚 log𝑛

Union-find part:
𝑂 𝑚 + 𝑛 log𝑛


