UNI
I

FREIBURG

"nr Algorithm Theory

Chapter 5
Data Structures

Part I:
Union Find: Basic Implementation

Fabian Kuhn

UNI

Minimum Spanning Trees

FREIBURG

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle

Algorithm Theory Fabian Kuhn

UNI

Implementation of Kruskal Algorithm

FREIBURG

1. Go through edges in order of increasing weights

sort edges by weight : O(mlogn) time

2. For each edge e = {u, v}:

if e does not close a cycle then

need to check if e closes a cycle
U

are u and v in same conn. comp.? v
add e to the current solution

Q

merge the connected components
containing nodes u and v.

O

Algorithm Theory Fabian Kuhn 3

Union-Find Data Structure

UNI
FREIBURG

Also known as Disjoint-Set Data Structure...
Manages partition of a set of elements (a set of disjoint sets)

Operations:
 make_set(x): create a new set that only contains element x

* find(x): return the set containing x

* union(x,y): merge the two sets containing x and y

® (x)
(x3) (xs)

Algorithm Theory Fabian Kuhn 4

Implementation of Kruskal Algorithm

UNI

FREIBURG

1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. For each edge e = {u, v}:
if find(u) # find(v) then
add e to the current solution

union(u, v)

Algorithm Theory Fabian Kuhn

Managing Connected Components

UNI
f

FREIBURG

* Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

* make_set(v) for every node v
* find(v) returns component containing v

* union(u, v) merges the components of u and v
(when an edge is added between the components)

* (Can also be used to manage biconnected components

Algorithm Theory Fabian Kuhn 6

Basic Implementation Properties

UNI
f

FREIBURG

Representation of sets:

* Every set S of the partition is identified with a representative,
by one of its members x € S

Operations:
* make_set(x): x is the representative of the new set {x}

* find(x): return representative of set S, containing x

* union(x, y): unites the sets S, and S,, containing x and y and
returns the new representative of 5, U §,,

Algorithm Theory Fabian Kuhn 7

Observations

UNI
f

FREIBURG

Throughout the discussion of union-find:

* n:total number of make_set operations
 m: total number of operations (make_set, find, and union)

Clearly:
* mz=2n

* There are at most n — 1 union operations

Remark:

 We assume that the n make_set operations are the first n
operations

— Does not really matter...

Algorithm Theory Fabian Kuhn 8

Linked List Implementation

Each set is implemented as a linked list:

* representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

v | | |
—1> 5 —12—8 —43— 1

x

| |
—> 9 — 15— 7
4

P

* sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9

Algorithm Theory Fabian Kuhn 9

UNI
f

FREIBURG

Linked List Implementation

UNI
f

FREIBURG

make_set(x):
 (Create list with one element:

time: 0(1) —

find(x):

e Return first list element: 'hl | |

time: 0(1)

——>y—>a—>x—>b

Algorithm Theory Fabian Kuhn

10

Linked List Implementation

UNI

FREIBURG

union(x, y):
* Append list of y to list of x:

I | | | § j |

T a— b — x — C U——>d—>e—>y
4 U 0\

v I | | | ‘ ‘

> >b—>x—>c—>d—>e—>y

x

Time: O(length of list of y)

Algorithm Theory Fabian Kuhn 11

URG

Cost of Union (Linked List Implementation) _z

Zul
o5&

Total cost for n — 1 union operations can be ©(n?):

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(x,_q, x,;), union(x,,_», X,_1), ..., union(xy, x,)

* #pointer redirections: 1 +2+ 3+ -+ n—1=0(n?

Algorithm Theory Fabian Kuhn 12

UNI

Union-By-Size Heuristic

FREIBURG

* In a bad execution, average cost per union can be 0(n)

* Problem: The longer list is always appended to the shorter one

Idea:
* In each union operation, append shorter list to longer one!

Cost for union of sets S, and S, O(min{lel, |Sy|})

Theorem: The overall cost of m operations of which at most u < n

are union operationsis O(m + u - logn). — L
n: #make_set op.

* There are at most n — 1 union operations
* Amortized and worst-case cost of make_set, find: 0(1)
e Amortized cost of union operation: O(logn)

Algorithm Theory Fabian Kuhn 13

Union-By-Size Heuristic

UNI

Theorem: The overall cost of m operations of which at mostu < n
are union operationsis O(m + u - logn).

Proof:

* Total cost of make-set & find operations: O(m)

 Total cost of union operations: O (#pointer redirections)

* Consider a fixed element x

* How often do we redirect the pointer of x?

A \ 4

X

FREIBURG

. . , Kruskal Algorithm:
* When redirecting the pointer of x,

the size of the set of x at least doubles. Sorting edges by weight:
— < log, n pointer redir. for element x O(mlogn)

— Butonly if x ends up in a set of size > 1 Union-find part:

* Total union cost: O(u - logn) O(m + nlogn)

Algorithm Theory Fabian Kuhn 14

