
Algorithm Theory

Chapter 7

Randomized Algorithms

Part V:
Basic Randomized Minimum Cut Algorithm

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Minimum Cut

Reminder: Given a graph 𝐺 = 𝑉, 𝐸 , a cut is a partition (𝐴, 𝐵)
of 𝑉 such that 𝑉 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ≠ ∅

Size of the cut (𝑨, 𝑩): # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 𝜆(𝐺))

Maximum-flow based algorithm:

• Fix 𝑠, compute min 𝑠-𝑡-cut for all 𝑡 ≠ 𝑠

• 𝑂 𝑚 ⋅ 𝜆 𝐺 = 𝑂(𝑚𝑛) per 𝑠-𝑡 cut

• Gives an O 𝑚𝑛𝜆 𝐺 = 𝑂(𝑚𝑛2)-algorithm

Algorithm Theory Fabian Kuhn 3

Edge Contractions

• In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

Contracting edge {𝒖, 𝒗}:

• Replace nodes 𝑢, 𝑣 by new node 𝑤

• For all edges {𝑢, 𝑥} and {𝑣, 𝑥}, add an edge {𝑤, 𝑥}

• Remove self-loops created at node 𝑤

not okok

𝒂

𝒖

𝒗

𝒄

𝒃

𝒂
𝒘 𝒄

𝒃

contract {𝒖, 𝒗}

Algorithm Theory Fabian Kuhn 4

Properties of Edge Contractions

Nodes:

• After contracting {𝑢, 𝑣}, the new node represents 𝑢 and 𝑣

• After a series of contractions, each node represents a subset of
the original nodes

Cuts:

• Assume in the contracted graph, 𝑤 represents nodes 𝑆𝑤 ⊂ 𝑉

• The edges of a node 𝑤 in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut 𝑆𝑤 , 𝑉 ∖ 𝑆𝑤

𝟏 𝟐

𝟑

𝟒 𝟓

𝟔

𝟑

𝟒 𝟓

𝟔

(𝟏, 𝟐) (𝟏, 𝟐)

𝟑

𝟓
(𝟒, 𝟔)

(𝟏, 𝟐)

(𝟒, 𝟓, 𝟔)

𝟑

(𝟏, 𝟐)

(𝟑, 𝟒, 𝟓, 𝟔)

{𝟏, 𝟐} {𝟒, 𝟔} {𝟓, (𝟒, 𝟔)} {𝟑, (𝟒, 𝟓, 𝟔)}

Algorithm Theory Fabian Kuhn 5

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least Τ1 𝑂(𝑛2).

• We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 𝑂(𝑛2).

• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛).

• We will see this later.

Algorithm Theory Fabian Kuhn 6

Contractions and Cuts

Lemma: If two original nodes 𝑢, 𝑣 ∈ 𝑉 are merged into the same
node of the contracted graph, there is a path connecting 𝑢 and 𝑣
in the original graph s.t. all edges on the path are contracted.

Proof:

• Any edge 𝑥, 𝑦 in the contracted graph corresponds to some
edge in the original graph between two nodes 𝑢′ and 𝑣′ in the
sets 𝑆𝑥 and 𝑆𝑦 represented by 𝑥 and 𝑦.

• Contracting {𝑥, 𝑦} merges the node sets 𝑆𝑥 and 𝑆𝑦 represented

by 𝑥 and 𝑦 and does not change any of the other node sets.

• The claim then follows by induction on the number of edge
contractions.

𝒖 𝒗𝒖′ 𝒗′
𝑺𝒙 𝑺𝒚

Algorithm Theory Fabian Kuhn 7

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

• All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph 𝐺 as follows:
– For a node 𝑢 of the contracted graph, let 𝑆𝑢 be the set of original nodes

that have been merged into 𝑢 (the nodes that 𝑢 represents)

– Consider a cut (𝐴, 𝐵) of the contracted graph

– 𝐴′, 𝐵′ with

𝐴′ ≔ራ

𝑢∈𝐴

𝑆𝑢 , 𝐵′ ≔ራ

𝑣∈𝐵

𝑆𝑣

is a cut of 𝐺.

– The edges crossing cut (𝐴, 𝐵) are in one-to-one correspondence with the
edges crossing cut (𝐴′, 𝐵′).

Algorithm Theory Fabian Kuhn 8

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (𝐴, 𝐵) of the input
graph 𝐺 if and only if it never contracts an edge crossing (𝐴, 𝐵).

Proof:

1. If an edge crossing (𝐴, 𝐵) is contracted, a pair of nodes 𝑢 ∈ 𝐴,
𝑣 ∈ 𝐵 is merged into the same node and the algorithm outputs
a cut different from (𝐴, 𝐵).

2. If no edge of (𝐴, 𝐵) is contracted, no two nodes 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
end up in the same contracted node because every path
connecting 𝑢 and 𝑣 in 𝐺 contains some edge crossing 𝐴, 𝐵

In the end there are only 2 sets  output is (𝐴, 𝐵)

Algorithm Theory Fabian Kuhn 9

Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific

minimum cut is at least Τ2 𝑛(𝑛 − 1) = ൗ1
𝑛
2

.

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph 𝐺 (no self-loops) is 𝑘,
𝐺 has at least Τ𝑘𝑛 2 edges.

Proof:

• Min cut has size 𝑘⟹ all nodes have degree ≥ 𝑘
– A node 𝑣 of degree < 𝑘 gives a cut 𝑣 , 𝑉 ∖ 𝑣 of size < 𝑘

• Number of edges 𝑚 = Τ1 2 ⋅ σ𝑣 deg 𝑣 ≥ Τ1 2 ⋅ 𝑛𝑘

≥ 𝑘

𝑣 𝑉 ∖ 𝑣

Algorithm Theory Fabian Kuhn 10

Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific
minimum cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘

• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing
(𝐴, 𝐵) gets contracted.

• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes
 and thus ≥ Τ𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘

𝑛 + 1 − 𝑖 𝑘
2

=
2

𝑛 + 1 − 𝑖
.

𝑨 𝑩⋮

𝑘 edges

Algorithm Theory Fabian Kuhn 11

Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific
minimum cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most Τ2 𝑛+1−𝑖.

• Event ℰ𝑖: edge contracted in step 𝑖 is not crossing (𝐴, 𝐵)
– Goal: show that ℙ ℰ1 ∩⋯∩ ℰ𝑛−2 ≥ Τ2 𝑛(𝑛 − 1).

ℙ alg. returns 𝐴, 𝐵

= ℙ ℰ1 ∩ ℰ2 ∩⋯∩ ℰ𝑛−2
= ℙ ℰ1 ⋅ ℙ ℰ2 | ℰ1 ⋅ ℙ ℰ3 | ℰ1 ∩ ℰ2 ⋅ ⋯ ⋅ ℙ ℰ𝑛−2 | ℰ1 ∩ ℰ2 ∩⋯∩ ℰ𝑛−3

ℙ ℰ𝑖 | ℰ1 ∩⋯∩ ℰ𝑖−1 ≥ 1 −
2

𝑛 + 1 − 𝑖
=
𝑛 − 𝑖 − 1

𝑛 − 𝑖 + 1

Algorithm Theory Fabian Kuhn 12

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• ℙ ℰ𝑖 | ℰ1 ∩⋯∩ ℰ𝑖−1 ≥ 1 −
2

𝑛−𝑖+1
=

𝑛−𝑖−1

𝑛−𝑖+1

• No edge crossing (𝐴, 𝐵) contracted: event ℰ = 𝑖=1ځ
𝑛−2ℰ𝑖

ℙ ℰ = ℙ ℰ1 ∩⋯∩ ℰ𝑛−2

= ℙ ℰ1 ⋅ ℙ ℰ2 | ℰ1 ⋅⋅ ⋯ ⋅ ℙ ℰ𝑛−2 | ℰ1 ∩⋯∩ ℰ𝑛−3

≥
𝑛 − 2

𝑛
⋅
𝑛 − 3

𝑛 − 1
⋅
𝑛 − 4

𝑛 − 2
⋅
𝑛 − 5

𝑛 − 3
⋅
𝑛 − 6

𝑛 − 4
⋅ ⋯ ⋅

4

6
⋅
3

5
⋅
2

4
⋅
1

3

=
2

𝑛 𝑛 − 1
=

1
𝑛
2

Algorithm Theory Fabian Kuhn 13

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in 𝑐 ⋅
𝑛
2

⋅ ln 𝑛 iterations:

1 −
1
𝑛
2

𝑐⋅
𝑛
2
⋅ln 𝑛

≤ 𝑒−𝑐 ln 𝑛 =
1

𝑛𝑐

Corollary: The contraction algorithm allows to compute a minimum
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• It remains to show that each instance can be implemented in
𝑂 𝑛2 time.

∀𝑥 ∈ ℝ ∶ 1 + 𝑥 ≤ 𝑒𝑥

