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Exercise 1: Landau-Notation (3+3+3 Points)

Prove or disprove the following statements.

(a) n3 − 9n2 ∈ Ω(n3).

(b)
(

log(
√
n)
)2 ∈ Θ(log n).

(c) nn ∈ Ω
(
(2n)!

)
.

Sample Solution

(a) True. For all n ≥ 18 we have n3 ≥ 18n2 and thus 2(n3 − 9n2) = n3 + (n3 − 18n2) ≥ n3. i.e.,
n3 − 9n2 ≥ 1

2n
3 (choose c = 1/2 and n0 = 18).

(b) False. We show (log(
√
n))

2
/∈ O(log n). We have (log(

√
n))

2
= 1

4(log n)2 and thus for c > 0

(log(
√
n))

2 ≤ c log n
⇔ (log n)2 ≤ 4c log n
⇔ log n ≤ 4c
⇔ n ≤ 24c

For given c, n0 > 0 choose n := max{d24ce+1, n0}. Then we have n ≥ n0 but (log(
√
n))

2
> c log n.

(c) False. We have
(2n)! = 2n · (2n− 1) · (n + 1) · n! > nn · n! ≥ nn · n .

Hence, for given c, n0 > 0, choose n := max{dce, n0}. Then we have n ≥ n0 but

c · nn < (2n)! .

Exercise 2: Divide-and-Conquer (11 Points)

Consider a set of n points in the plane given by their x and y coordinates (x, y ≥ 0). We say that
p = (x, y) is a Pareto optimal point if for all other points p′ = (x′, y′) it holds x′ < x or y′ < y. That
is, a point p is Pareto optimal if in the following picture, the area marked green is empty:
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Give a divide-and-conquer algorithm that finds all Pareto optimal points in time O(n log n). Analyze
the runtime.

Sample Solution

We present two ways of solving:

I.

Algorithm 1 pareto(S) . Input S: set of points

1: if |S| = 1 then
2: return S
3: else
4: Compute the median m of S w.r.t. the lexicographic order.
5: S` = {q ∈ S | q <lex m} . split S into left and right part
6: Sr = {q ∈ S | q ≥lex m}
7: P` = pareto(S`)
8: Pr = pareto(Sr)
9: y0 = max{y | ∃x : (x, y) ∈ Sr}

10: P ′
` = {(x, y) ∈ P` | y > y0}

11: return P ′
` ∪ Pr

Runtime: Dividing (computing the median) costs O(n) and combining (lines 9-11) O(n) as well. The
recurrence relation is hence T (n) = 2T (n/2) + O(n) with base case T (1) = O(1), which yields a
runtime of O(n log n).

II.
Given a set S of points, we use mergesort to sort the points lexicographically which takes time
O(n log n). Having S as a sorted array, we proceed in the following way:

Algorithm 2 pareto1(S)

1: Allocate an empty array P of length n . Array of Pareto optimal points
2: i = n− 1
3: ymax = −1
4: while i ≥ 0 do
5: q = S[i]
6: y = q[1] . q is a point (tuple) with q[0] its x-coordinate and q[1] its y-coordinate
7: if y > ymax then
8: P.append(q)
9: ymax = y

10: i−−
11: return P

To see the correctness of the algorithm, consider a point q in the lexicographically sorted array S.
All points to its left have either a smaller x-coordinate or the same x-coordinate and a smaller y-
coordinate. This means that q “wins” all comparisons with its points to the left. To win the comparison
with a point to its right, it needs to have a larger y-coordinate. Hence, q wins all comparisons if its
y-coordinate is larger than the maximum y-coordinate of the points to its right.
The runtime of pareto1 is O(n), so combined with the time for sorting we obtain an overall runtime
of O(n log n).
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