
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms Theory

Sample Solution Exercise Sheet 2
Due: Tuesday, 17th of November 2020, 4 pm

Exercise 1: Divide and Conquer (10 Points)

Consider a board with n× n cells with n = 2k for a k ∈ N≥1 (see below for an example). We have an
unlimited supply of a specifically shaped tile, which covers exactly 3 cells of the board as follows:

The goal is to cover the board with tiles (which can be turned by 90, 180 and 270 degrees). We call an
arrangement of tiles on the board a valid tiling, if all cells can be covered with the tile above without
any overlaps and without going over the edges of the board. Assume that the input board has an
arbitrary single cell that is initially covered (before the start of the algorithm). E.g. for n = 8 the
board may look like this:

(a) Is there a valid tiling for every 2k × 2k board (k ∈ N≥1) that is initially completely empty? Prove
or disprove. (2 Points)

(b) Describe a divide and conquer algorithm that computes a valid tiling on a n×n board in O(n2)
(with n=2k, k ∈ N≥1) that has one tiled cell. Assume that placing a tile is in O(1). (6 Points)

(c) Show the running time of O(n2). (2 Points)



Sample Solution

(a) No there is not. Assume there were such a valid tiling using t copies of the above tile. Then
3t = 22k, i.e., 3 divides a power of 2, a contradiction since 2 and 3 are both prime.

(b) Our strategy is to divide a 2k × 2k board into four 2k−1 × 2k−1 smaller boards and maintain the
invariant that one cell will always be tiled (using the knowledge that a valid tiling is impossible
on a completely empty board). This invariant immediately gives us a valid tiling for the base case
of a 2× 2 board.

Divide: We have a 2k × 2k board with k > 1 and one cell already tiled. We divide it into four
2k−1×2k−1 smaller boards. We make sure that each small board has one cell that is already tiled.
We do this by placing the tile such that it covers exactly one cell of each small board that does
not have a tiled cell yet, as exemplified by the following figure

2k−1= n
2

2k=n

Base Case: We have a 2× 2 board with one cell already tiled which looks like the example below
(except for the orientation of the tiled cell). This can obviously be covered using one of our
specifically shaped tiles and we obtain a valid tiling.

Conquer: By producing valid tilings for all 2 × 2 boards we obtain a valid tiling for the whole
board.

(c) The run time is T (n) = 4T (n/2) + O(1) which solves to O(n2) using the Master Theorem.

Remark: Assuming that finding the occupied cell is not for free (in the exercise we make that
assumption) does actually not increase the runtime asymptotically. Assume the board is given by
an n× n array filled with boolean values (where true means the cell is tiled and vice versa). Then
we find the tiled cell in O(n2) once before the divide and conquer starts. In the recursive calls of
the algorithm we always pass the coordinates of the cell that is already occupied as a parameter.
The coordinate of the filled cell in each smaller board obtained from the recursion is clearly always
known after placing the L-tile and can be passed as a parameter to further recursive calls.



Exercise 2: Fast Fourier Transformation (FFT) (10 Points)

Let p(x) = 7x7 + 6x6 + 5x5 + 4x4 + 3x3 + 2x2 + x. We want to compute the discrete fourier transform
DFT8(p) (where we define DFT8(p) := DFT8(a) given that a is the vector of coefficients of p). More
specifically, we want you to visualize the steps which the FFT-algorithm performs as follows.

(a) Illustrate the divide procedure of the algorithm. More precisely, for the i-th divide step, write
down all the polynomials pij for j ∈ {0, . . . , 2i−1} that you obtain from further dividing the
polynomials from the previous divide step i−1 (we define p00 := p). (3 Points)

(b) Illustrate the combine procedure of the algorithm. That is, starting with the polynomials of smal-
lest degree as base cases, compute the DFTN (pij) bottom up with the recursive formula given in
the lecture (where N is the smallest power of 2 such that deg(pij) < N). (7 Points)

Hints: The base case for a polynomial p = a of degree 0 is DFT1(p) = DFT1(a) = a. In general,
it also suffices to give the pij(ω) for the appropriate roots of unity ω, from which DFTN (pij) can be
derived. Use

√
· instead of floating point numbers if possible.

Sample Solution

(a)

p00(x) = 7x7 + 6x6 + 5x5 + 4x4 + 3x3 + 2x2 + x

p10(x) = 6x3 + 4x2 + 2x

p11(x) = 7x3 + 5x2 + 3x + 1

p20(x) = 4x

p21(x) = 6x + 2

p22(x) = 5x + 1

p23(x) = 7x + 3

p30(x) = 0

p31(x) = 4

p32(x) = 2

p33(x) = 6

p34(x) = 1

p35(x) = 5

p36(x) = 3

p37(x) = 7

(b) Base cases of the FFT algorithm (for any x ∈ C):

p30(x) = DFT1

(
p30

)
= (0)

p31(x) = DFT1

(
p31

)
= (4)

p32(x) = DFT1

(
p32

)
= (2)

p33(x) = DFT1

(
p33

)
= (6)

p34(x) = DFT1

(
p34

)
= (1)

p35(x) = DFT1

(
p35

)
= (5)

p36(x) = DFT1

(
p36

)
= (3)

p37(x) = DFT1

(
p37

)
= (7)



Bottom computation with the recursive formula:

p20(ω
0
2) = p30(ω

0
1) + ω0

2 · p31(ω0
1) = 0 + 1 · 4 = 4

p20(ω
1
2) = p30(ω

0
1)− ω0

2 · p31(ω0
1) = 0− 1 · 4 = −4

p21(ω
0
2) = p32(ω

0
1) + ω0

2 · p33(ω0
1) = 2 + 1 · 6 = 8

p21(ω
1
2) = p32(ω

0
1)− ω0

2 · p33(ω0
1) = 2− 1 · 6 = −4

p22(ω
0
2) = p34(ω

0
1) + ω0

2 · p35(ω0
1) = 1 + 1 · 5 = 6

p22(ω
1
2) = p34(ω

0
1)− ω0

2 · p35(ω0
1) = 1− 1 · 5 = −4

p23(ω
0
2) = p36(ω

0
1) + ω0

2 · p37(ω0
1) = 3 + 1 · 7 = 10

p23(ω
1
2) = p36(ω

0
1)− ω0

2 · p37(ω0
1) = 3− 1 · 7 = −4

p10(ω
0
4) = p20(ω

0
2) + ω0

4 · p21(ω0
2) = 4 + 1 · 8 = 12

p10(ω
1
4) = p20(ω

1
2) + ω1

4 · p21(ω1
2) = −4 + i · (−4) = −4− 4i

p10(ω
2
4) = p20(ω

0
2)− ω0

4 · p21(ω0
2) = 4− 1 · 8 = −4

p10(ω
3
4) = p20(ω

1
2)− ω1

4 · p21(ω1
2) = −4− i · (−4) = −4 + 4i

p11(ω
0
4) = p22(ω

0
2) + ω0

4 · p23(ω0
2) = 6 + 1 · 10 = 16

p11(ω
1
4) = p22(ω

1
2) + ω1

4 · p23(ω1
2) = −4 + i · (−4) = −4− 4i

p11(ω
2
4) = p22(ω

0
2)− ω0

4 · p23(ω0
2) = 6− 1 · 10 = −4

p11(ω
3
4) = p22(ω

1
2)− ω1

4 · p23(ω1
2) = −4− i · (−4) = −4 + 4i

p00(ω
0
8) = p10(ω

0
4) + ω0

8 · p11(ω0
4) = 12 + 1 · 16 = 28

p00(ω
1
8) = p10(ω

1
4) + ω1

8 · p11(ω1
4) = −4− 4i + i+1√

2
· (−4− 4i) = −4− 4i · (

√
2+1)

p00(ω
2
8) = p10(ω

2
4) + ω2

8 · p11(ω2
4) = −4 + i · (−4) = −4− 4i

p00(ω
3
8) = p10(ω

3
4) + ω3

8 · p11(ω3
4) = −4 + 4i + i−1√

2
· (−4 + 4i) = −4− 4i · (

√
2−1)

p00(ω
4
8) = p10(ω

0
4)− ω0

8 · p11(ω0
4) = 12− 1 · 16 = −4

p00(ω
5
8) = p10(ω

1
4)− ω1

8 · p11(ω1
4) = −4− 4i− i+1√

2
· (−4− 4i) = −4 + 4i · (

√
2−1)

p00(ω
6
8) = p10(ω

2
4)− ω2

8 · p11(ω2
4) = −4− i · (−4) = −4− 4i

p00(ω
7
8) = p10(ω

3
4)− ω3

8 · p11(ω3
4) = −4 + 4i− i−1√

2
· (−4 + 4i) = −4 + 4i · (

√
2+1)

Rewriting the discrete fourier transforms as vectors (not strictly necessary, though):

DFT2(p20) = (4,−4)

DFT2(p21) = (8,−4)

DFT2(p22) = (6,−4)

DFT2(p23) = (10,−4)

DFT4(p10) = (12,−4− 4i,−4,−4 + 4i)

DFT4(p11) = (16,−4− 4i,−4,−4 + 4i)

DFT8(p00) =
(
28,−4− 4i · (

√
2+1),−4− 4i,−4− 4i · (

√
2−1),

− 4,−4 + 4i · (
√

2−1),−4− 4i,−4 + 4i · (
√

2+1)
)


