
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms Theory
Sample Solution Exercise Sheet 4

Due: Tuesday, 1st of December 2020, 4 pm

Exercise 1: Number Picking Game (10 Points)

Consider an array A[0..n−1] of positive integer numbers. Consider the following game. The goal is
to pick numbers from A with a sum as large as possible. In the first turn you can pick one number
A[0] or A[n−1] from either end of the array A[0..n−1]. In the second turn an adversary picks the first
or last entry in the remaining array (either from A[1..n−1] or A[0..n−2]). Generally speaking, each
player picks in its turn either the number A[i] or A[j] from the remaining array A[i..j].

(a) Assuming that both players play optimally (and knowing that their respective adversary does as
well), give a recursive function w(i, j) describing the winnings the player who picks next from one
end of A[i..j] can still make for the rest of the game. Do not forget the base cases. Explain the
correctness of the recursion. (5 Points)

(b) We want to compute your total winnings provided that you are allowed to pick first and both you
and your adversary always play optimally (and both knowing that). Use w(i, j) and the principle
of dynamic programming to provide pseudo code that computes your total winnings under these
circumstances in O(n2) time. Explain the running time. (5 Points)

Sample Solution

(a) We start by observing that, since both players play optimally, the number w(i, j) can be applied
symmetrically for both sides. The second observation is that the game is what is called a zero sum
game. That means that the winnings of one player represents the amount that the other player
can not gain anymore. So essentially the winnings of one player is the loss of the other player.
Formally, if Wij :=

∑j
k=iA[k] is the maximum amount that can be won from the remaining array

A[i..j], then w(i, j) = max
{
Wij−w(i+1, j),Wij−w(i, j−1)

}
given that i < j (two choices left).

If we have i = j, then obviously w(i, j) = A[i] (which represents the base case).

(b) Algorithm 1 winnings(A, i, j,W) . assume W = Wij and global dict memo initialized to Null

if i = j then return A[i] . base case

if memo[i, j] 6= Null then return memo[i, j]

memo[i, j] ← max
{
W−winnings(A, i+1, j,W−A[i]),W−winnings(A, i, j−1,W−A[j])

}
return memo[i, j]

Assume that as a first step we compute the sum W := W0,n−1. Clearly this can be done in O(n)
time. Then we call winnings(A, 0, n−1,W). The runtime of winnings(A, 0, n−1,W) without the
runtime of the recursive sub-calls is just O(1).

It remains to count the total number of recursive sub calls of winnings(A, 0, n−1,W) we can
have. As soon as the value winnings(A, i, j,W) for a pair i, j is computed, it will be put into
memo[i, j]. From there on there will never be a recursive call winnings(A, i, j,W) for particular
pair (i, j) again. In total we have O(n2) pairs (i, j) ∈ [0, . . . n−1]2 (note that the condition i ≤ j
does not actually help in an asymptotic sense).

Exercise 2: Breaking Eggs (10 Points)

Imagine a building with n floors. We are given a supply of k eggs. For some reason we need to find
out at which floor eggs start breaking when dropped from a window on that floor.

Suppose that dropping an egg from a certain floor always produces the same result, regardless of which
egg is used and any other conditions. Initially, we do not have any knowledge at which height eggs
might break. If an egg does not break, then it does not take any harm and can be fully reused.

If an egg breaks when dropped from a floor, it also breaks when dropped from higher floors. If eggs
survive being dropped from a floor, they survive being dropped from lower floors. We call the floor
from which dropped eggs break but survive at all floors beneath, the critical floor. The goal is to find
the critical floor with minimum number of attempts (number of times eggs are being dropped).

(a) Suppose we have only one egg. Give a strategy to always find the critical floor, if it exists. (1 Point)

(b) We want some advance knowledge before starting to drop eggs. For inputs n and k, we want to
compute the exact number of attempts a(n, k) which an optimal strategy requires in the worst
case, until it finds the critical floor (if it exists). Give a recursive relation for a(n, k). Do not forget
the base cases. Explain the correctness of the recursion. (5 Points)

(c) Give an algorithm that uses the principle of dynamic programming to compute a(n, k) in O(kn2)
time. Explain the running time. (4 Points)

Sample Solution

(a) We start trying the first floor and as long as the egg survives we retry on the next higher floor.
If the egg breaks, the current floor is the critical one. If the egg survives floor n, then there is no
critical floor.

Fun fact: With k eggs, the runtime can be improved to O
(
k k
√
n
)
. We repeat the strategy from

part (a) for k phases in a nested fashion. Let si := b(k
√
n)k−ic be the stepwidth in phase i and let

S1 = [1..n] be the initial search space. For the first phase i = 1 we try every s1-th floor in S1 until
the egg breaks and if it does not break we also try the n-th floor.

If the egg never breaks we are done since we know that there is no critical floor. If the egg breaks
in the j-th attempt, we know that the critical floor must be one of the floors between floor (j−1)s1
(excluding) and floor js1 (including). We call this interval S2. The size of S2 is at most s1 floors.

In the second phase i = 2 We repeat the procedure with stepwidth s2 in interval S2, which gives
us an interval S3 of size s2, and so on. In general we repeat the procedure with stepwidth si on a
search space Si of size at most |Si| ≤ si−1. Finally, in phase k we have i = k and the stepwidth is
sk = 1. Then we will definitely find the critical floor within search space Sk (c.f. part (a)).

Runtime: In iteration i we have |Si| = si−1 floors left which we search with stepwidth si. This
requires at most O

(si−1

si

)
= O

(
k
√
n
)

attempts. Since we have at most k phases the total number

of attempts is O
(
k k
√
n
)
.

(b) Assume we have k eggs and an interval of n consecutive floors that are left to check for the critical
floor. We enumerate these from 1 to n (note that, in terms of computing the number of attempts,
it does not really matter where exactly those floors are located on the building as long as they are
consecutive).

If we drop an egg from floor i it might either break or survive. If it breaks, we have one egg less
but we know that the critical floor must be somewhere in the interval [1..i]. If it survives we know
that the critical floor must be somewhere in the interval [i+1..n] (floor i can be ruled out).

Since we have to consider the worst case we must assume that the worst of the both options:
“egg breaks”, “egg survives” occurs. From all possible floors i ∈ [1..n] we choose the one which

minimizes the worst (i.e., maximum) of both outcomes in terms of number of attempts. Thus we
obtain the following recursion:

a(n, k) = 1 + min
i∈[1..n]

{
max

(
a(i, k − 1), a(n−i, k)

)}
.

In terms of base cases, we know that worst case for k = 1 egg is n attempts, given that the critical
floor is the top most one. In another base case we have narrowed down our interval of floors to
n = 0, in which case we already found the critical floor. This must be the critical one under the
assumption that it exists.

(c) Algorithm 2 attempts(n, k) . assume we have a global dictionary memo initialized with Null

if k = 1 or n = 0 then return n . base case
if memo[n, k] 6= Null then return memo[n, k]

memo[n, k] ← 1 + mini∈[1..n]
{

max
(
attempts(i, k − 1), attempts(n−i, k)

)}
return memo[n, k]

We have at most kn recursions and each recursion takes O(n) time steps to compute the minimum
(neglecting the time required for recursive subcalls). The total running time is therefore O(kn2).

