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Exercise 1: Amortized Analysis (10 Points)

Consider a binary min-heap data structure that supports the two operations insert and delete-min.
The heap is initially empty and we assume that its number of elements never exceeds n.

(a) Use the accounting method to show that we can consider the amortized cost of insert to be
O(log n) and the amortized cost of delete-min to be O(1). (3 Points)

(b) Show the statement from part (a), this time using the potential function method. (5 Points)

(c) We would like to amortize the costs differently such that the amortized cost of insert is O(1)
and the amortized cost of delete-min is O(log n). Either define a feasible potential function that
yields these amortized costs or argue why this is not possible. (2 Points)

Sample Solution

(a) Let f(n) ∈ O(log n) be the maximum (actual) cost of insert and delete-min. We define the
amortized cost of insert as 2f(n) and the amortized cost of delete-min as 0. In any sequence
of operations on an initially empty heap, there are more insert than delete-min operations
(assuming one can not call delete-min on an empty heap) and so our bank account is always
non-negative or, in other words, the sum of the amortized costs is at least the sum of the actual
costs.

If we also allow to call delete-min on an empty heap with actual cost c = O(1), we can set the
amortized cost of delete-min to c. Then the charged costs for the insert operations pay for the
delete-min operations that are called on a non-empty heap.

(b) Let f(n) ∈ O(log n) be the maximum (actual) cost of insert and delete-min. We define a
potential function φ = f(n) · #elements in the heap. For any sequence of operations starting
on an empty heap we have φ0 = 0 and φi ≥ 0 and thus φ is a valid potential function. The
amortized cost of insert (actual cost plus change of potential) is ≤ 2f(n) and the amortized cost
of delete-min is ≤ 0.

(c) A sequence of n insert operation has actual cost
∑n

i=1 log i = ω(n), so there is no way to obtain
constant amortized cost for insert.

Exercise 2: Union Find - Linked List Implementation (8 Points)

In the lecture, we have seen a linked list implementation where each linked list has a pointer to the
first and last element. Describe an alternative implementation that uses only one of these pointers.
Your scheme should still allow for the union-by-size heuristic and should not increase the asymptotic
running time of the operations.



Sample Solution

We can omit the pointer to the first element. If we take the first element as representative, we can
access the first element from any other element in O(1), so a pointer to the last element is sufficient.

Alternatively, we can omit the pointer to the last element. What we have to do is to adjust the union

operation, i.e., the merging of two lists. Given two linked lists L and S where |L| ≥ |S|, we insert
S between the first and the second element of L. More detailed, we redirect the pointer of the first
element of L to the first element of S, then we go through S and reset the representative pointer of
each element to the representative (first element) of L. When reaching the last element of S, we set
its pointer to the second element of L. The running time is linear in the length of S as in the case
with two pointers.

Remark: Be careful to distinguish between the different pointers. There are pointers associated with
the lists (pointing to the first element) and for each list element (except the last) a “next element
pointer” and a “representative pointer”.

Exercise 3: Union Find - Disjoint-Set Forests (8 Points)

(a) Give a sequence of m make-set, union, and find operations, n of which are make-set operations,
that takes Ω(m log n) time when we use union by rank only. (3 Points)

(b) Suppose that we wish to add the operation print-set, which is given a node x and prints all
the members of x’s set, in any order. Show how to add this feature to the disjoint-set forest
implementation such that print-set takes time linear in the number of members of x’s set and
the asymptotic running times of the other operations are unchanged. Assume that we can print
each member of the set in O(1) time. (5 Points)

Sample Solution

(a) Let m = 3n. We do n make-set operations make-set(x0), . . . , make-set(xn−1) and then the
following union operations (for simplicity we assume that n is a power of 2):

for i = 1 to log n do
k = 2i

for j = 1 to n
k do

union(x(j−1)·k, xj·k−1)

We obtain one tree with depth log n and xn−1 as a leaf. Now we call n times find(xn−1) which
costs Ω(n log n) = Ω(m log n).

(b) Additionally to the parent pointer, we store at each element a doubly linked list of its children.
Then we implement print-set(x) by first finding the root and then visiting (and printing) all
nodes of the tree using BFS.

We must adapt the make-set, union, and find operations such that the childlist of each node
is maintained and the asymptotic running time does not change. When calling make-set(x), we
allocate an empty list for x’s children, so the costs are still O(1). The find operation is adapted
in the following way



Algorithm 1 find(a)

1: if a 6= a.parent then
2: old parent = a.parent
3: delete a from the childlist of old parent
4: r = find(old parent)
5: a.parent = r
6: Add a to r’s childlist
7: return a.parent

That is, when we reset the parent pointer of a node a to the root r when doing path compression,
we add a to r’s childlist and delete it from its old parent’s childlist. This yields constant additional
cost in each step, so the cost of find is multiplied with a constant factor (note that storing each
node’s children in a doubly linked list makes it possible to efficiently delete a node from it). When
attaching a tree with root r to a tree with root r′ in a union operation, we add r to the childlist of
r′, leading to constant additional cost for union (when ignoring the cost for the find subroutine).

Alternatively, instead of storing the children of each node, we can maintain a linked list of the
elements additional to the tree structure, with the root as the first element of the list. For efficient
concatenation, we need an additional pointer from the first element of the list to the last one.
Then, when attaching Ty (the tree containing y) to Tx (the tree containing x) in a union(x, y)
call, we attach the list of nodes of Ty to the list of nodes of Tx with O(1) overhead (we have to
find the roots rx and ry of Tx and Ty anyway, and then we go from rx to the last element in the
list and set a pointer from this element to ry). A find operation (with path compression) only
changes the tree structure and therefore needs no adaptation. When calling print-set(x) we go
to the root and then through the list of elements.


