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Exercise 1: Fibonacci Heap Worst Case (7 Points)

(a) Consider the Fibonacci heap given below. Perform a delete-min operation. Give the state before
and after the consolidate operation. Conduct the link operations exactly in the order in which
the algorithm given in the lecture does it (Chapter 5 Part IV Slide 16). (4 Points)

(b) Give a valid instance of a Fibonacci heap where delete-min has a worst case runtime of Ω(n)
and explain why this is the case for that instance. (3 Points)
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(b) Consider inserting the keys 1, . . . , n into an empty Fibonacci heap. These are going to be inserted,
in a lazy fashion, as heaps of rank zero into the rootlist. Then we run delete-min, which re-
moves the heap with key 1 and triggers a consolidate. The consolidate routine iterates over
the root-list, which still contains n−1 heaps. Therefore the total runtime of consolidate and
consequentially of delete-min is Ω(n).

Exercise 2: Fibonacci Heap Modifications (13 Points)

(a) Assume that operation decrease-key never occurs. Show that in this case, the maximum rank
D(n) of a Fibonacci heap is at most blog2(n)c. (5 Points)

(b) We want to augment the Fibonacci heap data structure by adding an operation increase-key(v, k)
to increase the key of a node v (given by a direct pointer) to the value k. The operation should have
an amortized running time of O(log n). Describe the operation increase-key(v, k) in sufficient
detail and prove the correctness and amortized running time. (8 Points)

Remark: You can use the same potential function as for the standard Fibonacci heap data structure.
Note however that after conducting increase-key(v, k) the Fibonacci heap must still be a list of
heaps, where the maximum rank D(n) ∈ O(log n).

Sample Solution

(a) First we show inductively that when there are no decrease-key operations, then a heap of rank
i in the rootlist has exactly 2i nodes (we call the number of nodes the size of the heap in the
following). A heap of rank 0 is just a single node, thus it has size 20 = 1.

Given a heap h of rank i > 0 which might also be a sub-heap attached to some parent node. The
only way the degree i of h can be created is by linking two heaps h1, h2 of rank i−1. By induction
hypothesis heaps of rank i−1 have 2i−1 elements. Therefore, the size of the heap h = link(h1, h2)
is the sum of the sizes of h,h2, i.e., 2i−1 + 2i−1 = 2i.

Remark: When we execute a delete-min operation, then smaller heaps that are attached to the
current minimum are cut and reinserted into the rootlist. But this does not change the the form
of the subheaps of the root in any way, so the induction argument above remains valid.

Since we have only n nodes in the Fibonacci heap in total, the heap with the biggest rank D(n)
must fulfill the inequality

2D(n) ≤ n⇐⇒ D(n) ≤ log2 n.

Since D(n) is an integer value we have D(n) ≤ blog2 nc.

(b) Implementation and correctness arguments: As suggested in the remark, we try to design
the increase-key(v, k) operation to maintain the same conditions of the Fibonacci heap. Specif-
ically, we ensure in the following that each node looses at most one rank by loosing a child. First
we assert that for increase-key(v, k) the new key k is larger than the current key of v. If k is
smaller than or equal to all the keys of its child nodes, the heap condition is not violated after
changing the key to k and we do nothing else.

Otherwise we first cut out and reinsert all child-heaps of v into the rootlist. Since v has lost too
many children (each node can loose at most one) we also cut v from its parent and reinsert it as
single node into the rootlist. Since v’s former parent now lost a child, we run the cascading cut
procedure on v’s former parent, meaning that all successive marked ancestors of v are cut out and
reinserted into the rootlist. The closest previously unmarked ancestor of v is marked.

Finally we have to consider a special case that forces us to do another step. If the node v whose
key we increased is the current minimum, then we have to go through the whole rootlist to find
the new minimum (or to confirm that v is still the minimum). But then we also have to run a
consolidate like for delete-min. The reason for that is technical: we have to shrink the size of



the rootlist R back down to D(n) in order to “pay” that costly search (and consolidate) with the
associated decrease in potential.

Runtime: The actual cost of our implementation of increase-key(v, k) is composed of the
following components. We have t1 ≤ D(n) steps for cutting and reinserting all child-heaps of v,
since D(n) is the maximum number of children v can have.

The next costly step is the cascading cuts procedure, which takes t2, where t2 is the number of
successively marked ancestors of v plus one or, alternatively, the distance to the closest unmarked
ancestor of v.

Finally, let us assume that we actually increase the key of current the minimum v. Then we have
to find a new minimum and also consolidate, which takes time to the order of t3 ≤ |H.rootlist|,
where R is the size of the rootlist.

The potential of the Fibonacci heap changes as follows:

Rnew = Rold + D(n) + 1− |H.rootlist|
Mnew = Mold − (t2 − 1)

Φnew = Φold + D(n) + 1− |H.rootlist| − 2(t2 − 1).

The difference Φnew−Φold can be used to offset or more precisely amortise our true costs t1+t2+t3:

ai = t1 + t2 + t3 + Φnew − Φold

≤ D(n) + t2 + |H.rootlist|+ Φnew − Φold

= D(n) + t2 + |H.rootlist|+ D(n) + 1− |H.rootlist| − 2(t2 − 1)

= 2D(n) + 3− t2

≤ 2D(n) + 3 ∈ O(log n).


