
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Sample Solution Exercise Sheet 7
Due: Tuesday, 22nd of December 2020, 4 pm

Exercise 1: Global Min-Cut (8 Points)

Given a simple, undirected graph G = (V,E) and a subset A ⊂ V with A 6= ∅ and A 6= V , we call
the number of edges between A and V \ A the size of the cut (A, V \ A). A min-cut of G is a cut of
minimum size.
Give an algorithm that computes the size of a min-cut of G in time O(|E| · |V |2). Explain why the
algorithm is correct and analyze the runtime.

Sample Solution

Pick an arbitrary source node s. For each v ∈ V \ {s}, we consider the flow network which we obtain
by directing each edge incident to s away from s and each edge incident to v towards v. All other
edges are replaced by two directed edges. Each edge is assigned capacity 1. We denote this network
by (G, s, v). We compute the size of a minimum (s, v)-cut in (G, s, v) using Ford-Fulkerson for all
v ∈ V \ {s} and finally take the minimum of all computed min-cuts.
Correctness: Let A be the size of a global min-cut and B the output of our algorithm. We show
A = B. We assume |V | ≥ 2, otherwise the statement is trivial.
Let v 6= s and (S, V \ S) be a (s, v)-cut in (G, s, v). The capacity of (S, V \ S) equals the number of
(undirected) edges between S and V \S in G. Hence the size of a global minimum cut in G is at most
the size of a minimum (s, v)-cut in (G, s, v) for any v 6= s. This implies A ≤ B.
On the other hand, let (A, V \A) be a global minimum cut in G. If s ∈ A, at some point our algorithm
computes a minimum (s, v)-cut (S, V \ S) in (G, s, v) for some v /∈ A. For this choice of v, the global
min-cut (A, V \A) induces an (s, v)-cut in (G, s, v) with capacity A and thus we have A ≥ c(S, V \S).
Hence we obtain A ≥ B. If s /∈ A, the proof goes along similar lines.
Runtime: We run Ford Fulkerson |V | times on a graph with maximum flow at most ∆ ≤ |V | (as
all capacities are 1). One execution thus takes O(|E| · |V |) and therefore the whole algorithm takes
O(|E| · |V |2).

Exercise 2: Scheduling (12 Points)

Assume there are n students s1, . . . , sn. Each student has finished some individual project and now
has to present the results to some professors. There are k professors p1, . . . , pk. Each professor pi
hands in a list Li ⊆ {s1, . . . , sn} of students for whose projects he/she is an expert. Each professor pi
is willing to attend at most ai presentations.
The exam regulations require that at each presentation, x professors that are experts on the topic are
present.

(a) Describe a polynomial-time algorithm that computes an assignment of the professors to the stu-
dent’s presentations such that the given constraints are fulfilled, or reports that no such assignment
exists. (6 Points)

(b) As there is a shortage of professors, the university loosens the requirements such that among the
x professors that need to be present at each presentation, at least y need to be an expert on the
topic, for some y < x. Describe how to construct a feasible schedule in this case. (6 Points)

Sample Solution

(a) We build a flow network with source node s, sink t, nodes s1, . . . , sn for the students and nodes
p1, . . . , pk for the professors. For each i ∈ {1, . . . , k}, we add the edge (s, pi) with capacity ai. For
each j ∈ {1, . . . , n}, we add the edge (sj , t) with capacity x. Finally, for each i ∈ {1, . . . , k} and
j ∈ {1, . . . , n}, we add the edge (pi, sj) with capacity 1 if sj ∈ Li. We compute a maximum flow
in this network. A feasible schedule exists if and only if the maximum flow equals n · x. In this
case, we find a schedule by assigning professor pi to student sj if the edge (pi, sj) exists and has
a flow value of 1.

(b) We take the flow network from (a) with the following adjustments. We add extra nodes s′1, . . . , s
′
n

for the students and edges (pi, s
′
j) with capacity 1 if sj /∈ Li. Further, we add edges (s′j , sj) for

each j ∈ {1, . . . , n} with capacity x− y. Then we proceed as in (a).

