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Exercise 1: Property of Augmenting Paths (10+5* Points)

Let G = (V,E) be a weighted, directed graph with n = |V | nodes and m = |E| edges, and let s, t ∈ V .

(a) Let f be a valid s-t-flow in G and assume that mf ≤ m is the number of edges e ∈ E for which
f(e) > 0. Show that f can be “decomposed” into flows along at most mf s-t paths Pi (i.e.,
1 ≤ i ≤ mf ). More precisely, show that there exist at most mf paths Pi each with a flow value
fi, such that for each e ∈ E we have

∑
i:e∈Pi

fi ≤ f(e) and such that
∑

i fi = |f |. (5 Points)

Hint: You can give a constructive proof using a greedy algorithm similar to the one in the lecture.

(b) The residual graph Gf can also be interpreted as a flow network with source s and sink t. Show
that the minimum s-t-cut in the residual graph Gf has capacity exactly |f∗| − |f |, where f∗ is a
maximum flow of G. (5 Points)

(c) Let |f | < |f∗|. Show that there is always an augmenting path P for G with respect to a given
flow f such that bottleneck(P, f) ≥ (|f∗| − |f |)/m. (5 Points)

Sample Solution

(a) First some intuition: We construct these paths iteratively. First we find a flow along a s-t-path
P1 that consists only of edges that have positive flow with respect to f . We make the flow f1 over
P1 as large as possible, so that all edges e ∈ P1 have flow f(e) ≥ f1. Then we decrease the flow
f along the path P1 by a value f1 to obtain a new, smaller flow. We rinse and repeat, until the
remaining flow has value 0. In each repetition the number of edges with positive flow decreases
by at least one. Thus we have split off at most mf paths Pi. Now the formalism.

Let f (i) with |f (i)| > 0 be the current flow that is left (initially f (1) := f). Consider the graph
Gi = (V,Ei), where Ei := {e ∈ E | f (i)(e) > 0}. Let Pi be an arbitrary s-t path in G1. Such a
path must exist given that |f (i)| > 0. Let fi := mine∈Pi f

(i)(e) be the smallest flow over an edge
of Pi. We “subtract” the flow along Pi from f (i) to obtain a new flow f (i+1) as follows.

f (i+1)(e) :=

{
f (i)(e)− fi, if e ∈ Pi

f (i)(e), else

Then f (i+1) is again a valid flow given that f (i) was valid. For that, one can easily verify that the
sum of incoming flows on each node V 3 v 6= s, t still equals the sum of outgoing flows from v
after subtracting fi on all edges of Pi; for each edge in Pi that enters v there must be an edge of
Pi that leaves v since Pi is an s-t-path. The value of the new flow is |f (i+1)| = |f (i)| − fi.
After that, at least one edge e that had flow f (i)(e) > 0 now has no flow left: f (i+1)(e) = 0. Simply
choose ei := arg mine∈Pi

f (i)(e), then f (i)(ei) = fi, hence f (i+1)(ei) = fi − fi = 0 by construction.



But this implies that in Ei+1 we lost at least one edge compared to Ei (consider the definition of
Ei+1 from above).

Therefore, after at most mf steps, there are no edges left anymore, i.e., the remaining flow value
|f (j)| for some j ≤ mf must be 0, and no additional path Pj+1 can be split off anymore. In total
we get at most mf paths Pi, for i ≤ mf . The sum of flows along the paths Pi equals the flow f
by construction, which implies that

∑
i:e∈Pi

fi ≤ f(e) and
∑

i fi = |f |.

(b) Some intuition first. Roughly speaking, we can start out by considering a maximum flow f ′ of Gf .
Then we prove (by dissasembling into augmenting paths) that a maximum flow f∗ of G fulfills
|f ′| = |f∗| − |f |. Since f ′ is a max flow in Gf , according the the max-flow min-cut theorem, Gf

must have a min-cut of capacity |f ′| = |f∗| − |f |. Now more formally.

First of all, the statement is clear for |f | = |f∗| (i.e., f is already optimal) because then there must
be a cut with capacity 0 in Gf (c.f., lecture). Assume |f | < |f∗|. Again, we give a constructive
argument. We start off by computing a maximum flow f ′ of Gf . We compute this flow f ′ step by
step with a series of augmenting paths Pi in Gf .

Initially, let f1 := f . Iteratively, let Pi be an augmenting path inGfi and let fi+1 := augment(fi, Pi)
(note that the augment function “adds” an augmenting path to a flow and is given more formally
in the lecture). Finally, in some step k, there will be no augmenting path in Gfk anymore. Then
there must be a cut in Gfk that has capacity 0. Therefore |fk| = |f∗| is a maximum flow in G.

Then we consider the flow f ′ given by the augmenting paths P1, . . . , Pk in Gf . More formally,
we can define f ′ in iterative fashion as before, but starting with no flow and then adding the Pi:
Let f ′1 be the largest possible flow along P1 in Gf (!). Iteratively, let f ′i+1 := augmentGf

(f ′i , Pi)

(whereas the augmentGf
function observes the capacities of Gf ). Finally, we set f ′ := f ′k.

Note the symmetry of augmenting f in G along the paths Pi and augmenting the “zero-flow”
in Gf along the same paths Pi. Due to this symmetry, f ′k is a max. flow of Gf because fk is a
max. flow of G. Therefore |f ′| = |f ′k| = |fk| − |f | = |f∗| − |f |. The final argument comes from
the max-flow min-cut theorem. Since f ′ is a maximum flow in Gf , there must be a s-t-cut with
capacity |f ′| = |f∗| − |f | in Gf .

(c) According to part (a) the maximum flow f ′ in Gf can be decomposed into at most mf ≤ m paths
Pi with respective flow values fi, 1 ≤ i ≤ m such that these sum up to |f ′| =

∑mf

i=1 fi. Consider a
minimum s-t-cut in Gf with capacity |f∗|−|f | (part b). Then f ′ has flow |f ′| = |f∗|−|f | =

∑mf

i=1 fi
due to the max-flow min-cut theorem. Therefore the average size of the flow values fi must be at
least (|f∗| − |f |)/mf ≥ (|f∗| − |f |)/m. But then at least one fj must be larger than average, i.e.,
fj ≥ (|f∗| − |f |)/m. This is the path Pj we were looking for.

One technicality remains: W.l.o.g. at most m edges of Gf must have a positive flow with respect
to f . Note that Gf can have 2m edges, but we can make it so that only one direction of each edge
has positive flow w.r.t. f (otherwise we can easily balance flows over forward and backward edge
of a given edge out with one another so that at least one of the two flows becomes 0).

Exercise 2: Vertex Connectivity Refined (10+5* Points)

In the lecture we saw that a minimum vertex cut (MVC) can be computed in time O(m · n3). Given
that some parameters of the undirected, unweighted input graph G = (V,E) are fairly small, we want
to improve that runtime.

(a) Let κ be the vertex connectivity of G, i.e., the number of vertices in an MVC. Show that in order
to compute a global MVC, it suffices to compute minimum s-t vertex cuts for O(n · κ) different
source-target pairs (s, t). (3 Points)

Hint: Show that picking an arbitrary set of κ+ 1 sources suffices.



(b) Give an algorithm to find an MVC in time O(m · n · κ2). (2 Points)

Remark: You can assume for now that κ is already known. If you did not succeed in part (a), you
might still be able to show a running time of O(m · n2 · κ) here.

(c) How can the same asymptotic running time be achieved without knowing κ in advance?(3 Points)

(d) Let δ be the minimum degree of G (i.e., the minimum number of incident edges of some node in
G). Show that it even suffices to compute minimum s-t vertex cuts for O(n + δ2) pairs s, t ∈ V .
Argue why this is the case and how you can find these O(n+ δ2) s,t-pairs. (6 Points)

Hint: Let v be some node of degree δ and make a case distinction depending on if there exists an
MVC that does not contain v or if v is contained in all MVCs.

(e) Explain how you get an overall running time of O
(
mκ ·min(n+δ2, κn)

)
for computing an MVC

in a graph G with vertex connectivity κ and minimum degree δ. (1 Point)

Sample Solution

(a) Let X be some arbitrary MVC and let s /∈ X. Let G′ be the (unconnected) graph induced by
V \X. Let t be in a different connected component than s in G′. Then, in particular, X is also
the (a) minimum s-t-vertex cut. Therefore, when computing a minimum s-t-vertex cut we will
find X or another MVC that is equally small.

So we just have to make sure that we pick two nodes s, t ∈ V that fulfill the requirements above.
As in the hint, we pick κ+ 1 different sources s ∈ V . But since |X| = κ, we must have picked at
least one source s /∈ X. Each time we pick a source s we compute the minimum s-t-vertex cut for
all t ∈ V that are not neighbors of s. That way we guarantee that we pick at least one t that is
in a different connected component in G′ than the source s /∈ X. Overall we have to compute the
minimum s-t-vertex cut for (κ+ 1) · n = O(κn) different pairs.

(b) The next observation is that by transforming the minimum s-t-vertex problem into a maximum
flow problem (c.f., lecture Chapter 6 Part IV slide 6), the maximum flow is exactly κ provided
that s, t are a “right pick”, i.e., they are not in the MVC and in different connected components.

This means that we can stop the search after κ+1 augmentations at the latest, because if the flow
is κ+ 1, we would not have the right pair s, t. And if the flow is maximum (no augmenting path
anymore) after at most κ augmentations, we have the right MVC. This means that computing a
minimum s-t vertex cut takes O(κ ·m) (instead of O(n ·m) in general, c.f., lecture).

If we combine this with the result from part (a), where we showed that we have to make just
O(κn) minimum s-t vertex cut computations, then the overall running time is O(m · n · κ2).

(c) We employ a trick that is sometimes called exponential guessing. Let κ be the true size of a MVC.
First we observe that if we guess a value for κ′ < κ, then the algorithm above does not necessarily
give a result that is correct or optimal (i.e., minimal) after doing the steps given in part (b) with
κ′. We determine that κ′ < κ by trying to find another augmenting path after the we achieved
a flow of κ′ and if in fact κ′ < κ then we have to find one and the result was not optimal. The
runtime for just one additional augmentation step is asymptotically the same. 1

On the other hand, if we guess a value for κ′ ≥ κ then this is no problem in terms of correctness,
since we just try more possible pairs s, t and try to augment for longer. To sum it up: We know
how to falsify a result for guessed values κ′ < κ and guessing κ′ ≥ κ does not cause any issues.

1A bit more detailed (not expected from students) there are two issues from assuming a too small value κ′ < κ. First,
we will not be guaranteed to get a right pair s, t which fulfills the requirements stated in part (a) so that a minimum s-t
vertex cut will not necessarily be a MVC. That means that the minimum s-t vertex cut could be larger than the actual
MVC. Second, we will stop the augmentation process too early (c.f. part (b)). In both cases there would still be an
augmenting path left which shows the incorrectness or non-optimality of the result.



Now all that is left is to guess increasing values for κ′ and do the procedure as described above
and then verify (or falsify) that we have the correct result. We start with κ′ = 1 and then repeat
by doubling κ′ = 2κ′ as long as the result is still incorrect. Given that κ is the true size of a MVC,
let κ ≤ 2k < 2κ, i.e., 2k is the smallest power of 2 that is at least as big as κ. We have the correct
result when we arrive at κ′ = 2k. Given that one run for a specific choice of κ′ takes O(m · n · κ′2)
the overall runtime is (roughly, avoiding O(·) in the calculation as long as possible)

m · n · 12 +m · n · 22 + · · ·+m · n · 22k

= m · n ·
∑k

i=02
2i ≤ m · n ·

∑2k
i=02

i = m · n · (22k+1 − 1)

≤ m · n · 22k+1 = m · n · 2 · 22k = m · n · 2 · (2k)2

≤ m · n · 2 · (2κ)2 = m · n · 8 · κ2 = O(m · n · κ2).

(d) Let X be a MVC. Let G′ be the unconnected graph induced by V \X. We pick a node v ∈ V that
has degree δ (actually computing such a node is cheap by comparison, c.f., part (e)) and make a
case distinction for v ∈ X and v /∈ X (as suggested by the hint).

If v /∈ X, then for a t that is in a different component of G′ than v the minimum v-t vertex cut
corresponds to the MVC X or to another MVC that is equally small. In this case we can simply
compute minimum v-t vertex cuts for all possible t ∈ V that are not neighbors of v, so we have
O(n) pairs to check.

Now assume v ∈ X. We claim that at least two neighbors of v are in different connected com-
ponents of G′. For a contradiction assume all neighbors of v are in X or in some connected
component C of G′. But then removing X ′ := X \ {v} from G already disconnects G into more
than one connected component.

This is because, given a node w ∈ C ′ where C ′ 6= C is another connected component of G′, then w
will still be disconnected from C after removing only the smaller set X ′ from G as w did not share
an edge with v (c.f., Figure 1). We have |X ′| = |X|− 1, thus X was not an MVC, a contradiction.

v

X

X ′

C
C ′

w

Figure 1: Set X ′ := X \ {v} (purple) is a “smaller MVC” than X, a contradiction.

Consequentially, v must have two neighbors in different connected components of G′. Therefore
we just have to compute minimum s-t vertex cuts for all possible pairs of neighbors of v in order
to obtain a MVC. There are O(δ2) such pairs.

Since we do not know in advance which case is actually true, we run both proposed algorithms (i.e.,
we compute minimum v-t vertex cuts for the proposed pairs of nodes) and take the better result,
i.e., the smaller vertex cut. Since one of the two cases must actually be true, we are guaranteed
to obtain a MVC. In total we compute minimum v-t vertex cuts for O(n+ δ2) pairs of nodes.

(e) The final runtime consists of bringing all the previous results together. A run of computing a
minimum s-t vertex cut for just one pair s, t ∈ V takes O(mκ) as outlined in part (b)+(c). Then



we have to decide whether to go for the “pair-reduction” in (a) or the one in (d). We compare
n+ δ2 and κn and use the variant with fewer pairs. The overall running time is therefore

O(mκ · number of executions) = O(mκ ·min(n+ δ2, nκ)).

Remark: Note that in case we use the variant from part (d), computing a node v with degree δ can
be done in O(n+m) additional time steps, which does not change the asymptotic runtime.


