Algorithms Theory Sample Solution Exercise Sheet 9

Due: Tuesday, 19th of January 2021, 4 pm

Exercise 1: Matching vs Vertex Cover

Given an undirected Graph $G=(V, E)$, a vertex cover of G is a set of nodes $S \subseteq V$ such that for all $\{u, v\} \in E$, we have $\{u, v\} \cap S \neq \emptyset$. A minimum vertex cover is a vertex cover of minimum size.
a) Show that for a maximum matching M^{*} and a minimum vertex cover S^{*} we have $\left|M^{*}\right| \leq\left|S^{*}\right|$. (2 Points)

Next we want to show that in bipartite graphs, it also holds $\left|S^{*}\right| \leq\left|M^{*}\right|$.
b) Recall that we can solve the maximum bipartite matching problem by reduction to maximum flow. Also recall that if we are given a maximum matching M^{*} (and thus a maximum flow of the corresponding flow network), we can find a minimum s - t cut by considering the residual graph. Describe how such a minimum cut looks like.

Hint: Consider the set of all nodes which can be reached from an unmatched node on the left side via an alternating path.
(3 Points)
c) Use the above description to show that any bipartite graph G has a vertex cover S^{*} of size $\left|M^{*}\right|$. (3 Points)
d) Show that the same thing is not true for general graphs by showing that for every $\varepsilon>0$, there exists a graph $G=(V, E)$ for which $\left|S^{*}\right| \geq(2-\varepsilon)\left|M^{*}\right|$.

Hint: First try to find any graph for which $\left|S^{*}\right|>\left|M^{*}\right|$.
(2 Points)

Sample Solution

a) For each edge in the matching, at least one endpoint must be in the vertex cover. As a node can not cover more than one matching edge, there are at least as many nodes in the vertex cover as edges in the matching.
b) Let $B=(U \cup V, E)$ be a bipartite graph with maximum matching M^{*}. In the corresponding flow network there is a source node s which is connected to all nodes in U and a target node t to which all nodes in V are connected. For $u \in U$ and $v \in V$, there is an edge from u to v iff u and v are adjacent in B. All edges have capacities 1 . Let f be the maximum flow that corresponds to M^{*} and R the residual graph w.r.t. f. We know from the lecture that $\left(A^{*}, B^{*}\right)$ is a minimum cut where A^{*} is defined as the set of nodes which can be reached from s by a path in R on which each edge has a positive capacity. For an $u \in U$, the edge (s, u) has positive residual capacity iff u is not matched. As there are no edges in B directing from V to U, we know that all edges from U to V are forward edges and all edges from V to U are backward edges. If (u, v) for an $v \in V$ has positive residual capacity, there is no flow through (u, v) and we know $\{u, v\} \notin M^{*}$. If $\left(v, u^{\prime}\right)$ for an $u^{\prime} \in U$ has positive residual capacity, there is flow through $\left(u^{\prime}, v\right)$ and we know $\left\{u^{\prime}, v\right\} \in M^{*}$. Hence, A^{*} consists of s and all nodes which can be reached from an unmatched node on the left side via an alternating path.
c) Define $S^{*}=\left(U \cap B^{*}\right) \cup\left(V \cap A^{*}\right)$.
\boldsymbol{S}^{*} is a vertex cover: S^{*} covers all edges with left endpoint in B^{*} or right endpoint in A^{*}. To show that S^{*} is a vertex cover we need to show that there is no edge in the graph with left endpoint in A^{*} and right endpoint in B^{*}. Assume $e=\{u, v\}$ was such an edge. As $u \in A^{*}$, there is an alternating path to u. So if $e \notin M^{*}$, we could extend this path to v and therefore have $v \in A^{*}$, a contradiction. Otherwise, if $e \in M^{*}$, an alternating path reaching u must also contain v which implies that also $v \in A^{*}$, a contradiction.
$\left|\boldsymbol{S}^{*}\right|=\left|\boldsymbol{M}^{*}\right|:$ We showed before that there is no edge between a node in $U \cap A^{*}$ and a node in $V \cap B^{*}$. As there is no edge directed from V to U this means that the edges going out of A^{*} are those from s to $U \cap B^{*}$ and from $V \cap A^{*}$ to t. These edges stand in a 1-1 correspondence to the nodes in S^{*}. So the size of the minimum cut $\left(A^{*}, B^{*}\right)$ equals $\left|S^{*}\right|$. As the size of a min-cut also equals the maximum flow which equals $\left|M^{*}\right|$, we obtain $\left|S^{*}\right|=\left|M^{*}\right|$.
d) The statement even holds for $\varepsilon=0$ and arbitrary large graphs. For an odd n, consider K_{n}, the clique with n nodes. The size of a matching of any n-node graph is at most $\lfloor n / 2\rfloor$ which equals $(n-1) / 2$ if n is odd. A vertex cover of K_{n} is of size at least $n-1$, because if two nodes u and v were not in the cover, the edge between them would not be covered. So we have $\left|S^{*}\right|=2\left|M^{*}\right|$.

Exercise 2: Contention Resolution

Show that for the randomized algorithm for contention resolution from the lecture, the expected time until all processes have been successful is $O(n \log n)$.

Sample Solution

Let T be the random variable that equals the time until all processes succeeded. The expected value of T is defined by

$$
E[T]=\sum_{t=1}^{\infty} t \cdot \operatorname{Pr}(T=t)
$$

We define $t_{i}:=(i+1) \cdot e n \ln n$. We have

$$
E[T]=\sum_{t=1}^{\infty} t \cdot \operatorname{Pr}(T=t)=\sum_{t=1}^{t_{2}} t \cdot \operatorname{Pr}(T=t)+\sum_{t=t_{2}+1}^{\infty} t \cdot \operatorname{Pr}(T=t)
$$

We show

1. $\sum_{t=1}^{t_{2}} t \cdot \operatorname{Pr}(T=t)=O(n \log n)$
2. $\sum_{t=t_{2}+1}^{\infty} t \cdot \operatorname{Pr}(T=t)=O(1)$
3.

$$
\sum_{t=1}^{t_{2}} t \cdot \operatorname{Pr}(T=t) \leq \sum_{t=1}^{t_{2}} t_{2} \cdot \operatorname{Pr}(T=t)=t_{2} \sum_{t=1}^{t_{2}} \operatorname{Pr}(T=t) \leq t_{2}=3 e n \ln n
$$

2.

$$
\begin{aligned}
\sum_{t=t_{2}+1}^{\infty} t \cdot \operatorname{Pr}(T=t) & =\sum_{i=2}^{\infty} \sum_{t=t_{i}+1}^{t_{i+1}} t \cdot \operatorname{Pr}(T=t) \leq \sum_{i=2}^{\infty} t_{i+1} \sum_{t=t_{i}+1}^{t_{i+1}} \operatorname{Pr}(T=t) \leq \sum_{i=2}^{\infty} t_{i+1} \operatorname{Pr}\left(T>t_{i}\right) \\
& \stackrel{(*)}{\leq} \sum_{i=2}^{\infty} \frac{(i+2)(e n \ln n)}{n^{i}} \leq \sum_{i=2}^{\infty} \frac{(i+2) e n^{2}}{n^{i}}=\sum_{i=2}^{\infty} \frac{(i+2) e}{n^{i-2}}=\sum_{j=0}^{\infty} \frac{(j+4) e}{n^{j}} \\
& =e \sum_{j=0}^{\infty} \frac{j}{n^{j}}+4 e \sum_{j=0}^{\infty} \frac{1}{n^{j}}=O(1)
\end{aligned}
$$

At $(*)$ we used $\operatorname{Pr}\left(T>t_{i}\right)<\frac{1}{n^{i}}$ (known from the lecture).

