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Exercise 1: Matching vs Vertex Cover (10 Points)

Given an undirected Graph G = (V,E), a vertex cover of G is a set of nodes S ⊆ V such that for all
{u, v} ∈ E, we have {u, v} ∩ S 6= ∅. A minimum vertex cover is a vertex cover of minimum size.

a) Show that for a maximum matching M∗ and a minimum vertex cover S∗ we have |M∗| ≤ |S∗|.
(2 Points)

Next we want to show that in bipartite graphs, it also holds |S∗| ≤ |M∗|.

b) Recall that we can solve the maximum bipartite matching problem by reduction to maximum
flow. Also recall that if we are given a maximum matching M∗ (and thus a maximum flow of the
corresponding flow network), we can find a minimum s-t cut by considering the residual graph.
Describe how such a minimum cut looks like.

Hint: Consider the set of all nodes which can be reached from an unmatched node on the left
side via an alternating path. (3 Points)

c) Use the above description to show that any bipartite graph G has a vertex cover S∗ of size |M∗|.
(3 Points)

d) Show that the same thing is not true for general graphs by showing that for every ε > 0, there
exists a graph G = (V,E) for which |S∗| ≥ (2− ε)|M∗|.

Hint: First try to find any graph for which |S∗| > |M∗|. (2 Points)

Sample Solution

a) For each edge in the matching, at least one endpoint must be in the vertex cover. As a node can
not cover more than one matching edge, there are at least as many nodes in the vertex cover as
edges in the matching.

b) Let B = (U ∪ V,E) be a bipartite graph with maximum matching M∗. In the corresponding flow
network there is a source node s which is connected to all nodes in U and a target node t to which
all nodes in V are connected. For u ∈ U and v ∈ V , there is an edge from u to v iff u and v are
adjacent in B. All edges have capacities 1. Let f be the maximum flow that corresponds to M∗

and R the residual graph w.r.t. f . We know from the lecture that (A∗, B∗) is a minimum cut
where A∗ is defined as the set of nodes which can be reached from s by a path in R on which each
edge has a positive capacity. For an u ∈ U , the edge (s, u) has positive residual capacity iff u is
not matched. As there are no edges in B directing from V to U , we know that all edges from U
to V are forward edges and all edges from V to U are backward edges. If (u, v) for an v ∈ V has
positive residual capacity, there is no flow through (u, v) and we know {u, v} /∈ M∗. If (v, u′) for
an u′ ∈ U has positive residual capacity, there is flow through (u′, v) and we know {u′, v} ∈ M∗.
Hence, A∗ consists of s and all nodes which can be reached from an unmatched node on the left
side via an alternating path.



c) Define S∗ = (U ∩B∗) ∪ (V ∩A∗).

S∗ is a vertex cover: S∗ covers all edges with left endpoint in B∗ or right endpoint in A∗. To
show that S∗ is a vertex cover we need to show that there is no edge in the graph with left endpoint
in A∗ and right endpoint in B∗. Assume e = {u, v} was such an edge. As u ∈ A∗, there is an
alternating path to u. So if e /∈ M∗, we could extend this path to v and therefore have v ∈ A∗,
a contradiction. Otherwise, if e ∈ M∗, an alternating path reaching u must also contain v which
implies that also v ∈ A∗, a contradiction.

|S∗| = |M∗|: We showed before that there is no edge between a node in U ∩ A∗ and a node in
V ∩ B∗. As there is no edge directed from V to U this means that the edges going out of A∗ are
those from s to U ∩ B∗ and from V ∩ A∗ to t. These edges stand in a 1-1 correspondence to the
nodes in S∗. So the size of the minimum cut (A∗, B∗) equals |S∗|. As the size of a min-cut also
equals the maximum flow which equals |M∗|, we obtain |S∗| = |M∗|.

d) The statement even holds for ε = 0 and arbitrary large graphs. For an odd n, consider Kn, the
clique with n nodes. The size of a matching of any n-node graph is at most bn/2c which equals
(n− 1)/2 if n is odd. A vertex cover of Kn is of size at least n− 1, because if two nodes u and v
were not in the cover, the edge between them would not be covered. So we have |S∗| = 2|M∗|.

Exercise 2: Contention Resolution (10 Points)

Show that for the randomized algorithm for contention resolution from the lecture, the expected time
until all processes have been successful is O(n log n).

Sample Solution

Let T be the random variable that equals the time until all processes succeeded. The expected value
of T is defined by

E[T ] =

∞∑
t=1

t · Pr(T = t) .

We define ti := (i + 1) · en lnn. We have

E[T ] =
∞∑
t=1

t · Pr(T = t) =

t2∑
t=1

t · Pr(T = t) +
∞∑

t=t2+1

t · Pr(T = t)

We show

1.
t2∑
t=1

t · Pr(T = t) = O(n log n)

2.
∞∑

t=t2+1
t · Pr(T = t) = O(1)

1.
t2∑
t=1

t · Pr(T = t) ≤
t2∑
t=1

t2 · Pr(T = t) = t2

t2∑
t=1

Pr(T = t) ≤ t2 = 3en lnn

2.

∞∑
t=t2+1

t · Pr(T = t) =

∞∑
i=2

ti+1∑
t=ti+1

t · Pr(T = t) ≤
∞∑
i=2

ti+1

ti+1∑
t=ti+1

Pr(T = t) ≤
∞∑
i=2

ti+1 Pr(T > ti)

(∗)
≤
∞∑
i=2

(i + 2)(en lnn)

ni
≤
∞∑
i=2

(i + 2)en2

ni
=

∞∑
i=2

(i + 2)e

ni−2 =

∞∑
j=0

(j + 4)e

nj

= e
∞∑
j=0

j

nj
+ 4e

∞∑
j=0

1

nj
= O(1)



At (∗) we used Pr(T > ti) <
1
ni (known from the lecture).


