
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms Theory
Sample Solution Exercise Sheet 10

Due: Tuesday, 26th of January 2021, 4 pm

Exercise 1: Max Cut (10 Points)

Let G = (V,E) with n = |V |,m = |E| be an undirected, unweighted graph. Consider the following
randomized algorithm: Every node v∈V joins the set S with probability 1

2 . The output is (S, V \S).

(a) What is the probability to obtain a cut? (1 Point)

(b) For e ∈ E let random variable Xe = 1 if e crosses the cut, and Xe = 0, else. Let X =
∑

e∈E Xe.
Compute the expectation E[X] of X. (2 Points)

(c) Show that with probability at least 1/3 this algorithm outputs a cut of size at least m/4 (that is
a cut of maximum possible size can be at most 4 times as large). (4 Points)

Remark: For a non-negative random variable X, the Markov inequality states that for all t > 0
we have P(X ≥ t) ≤ E[X]

t .

(d) Show how to use the above algorithm to obtain a cut with at least m/4 edges with probability at
least 1−

(
2
3

)k
for k ∈ N. (3 Points)

Remark: If you did not succeed in (c) you can use the result as a black box for (d).

Sample Solution

(a) We obtain no cut if no node joins S or if all nodes join S, because in either case one of the sets S
or V \ S is empty. The probability that one of these events happens is 2(12)n = (12)n−1.

(b) Each node joins either side of the cut with equal probability. For an edge e = {u, v} ∈ E the
probability that its endpoints u, v join different sides is two out of four equally probable outcomes
(u ∈ S and v /∈ S or u /∈ S and v ∈ S or u, v ∈ S or u, v /∈ S). Hence P(Xe=1) = 1

2 . We obtain

E[X] = E
[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] =
∑
e∈E

P(Xe = 1) =
m

2
.

(c) Let E be the event that the algorithm produces a cut of size less than m
4 . Then P(E) = P(X< m

4 ).

Define random variable Y as Y = m−X. Then E[Y ] = m−E[X] = m−m
2 = m

2 . We get

P(E) = P(X <
m

4
)

= P(Y >
3m

4
)

≤ P(Y ≥ 3m

4
)

≤ E[Y ]

(3m/4)
(Markov inequality)

=
m/2

3m/4
=

2

3



Hence the probability that the algorithm produces a cut of size less or equal m
4 is at most 2

3 , which
means with probability at least 1−2

3 = 1
3 we get a cut of size more than m

4 . Obviously the number
of edges that cross any cut is at most m. Therefore our algorithm outputs a 1

4 -approximation
with probability 1

3 .

(d) In order to guarantee a 1
4 -approximation of the maximum cut with probability 1−

(
2
3

)k
, we repeat

the above construction of max-cut algorithm k times and take the largest cut we find. Then the
probability that we do not get m

4 edges or more is at most (2/3)k, since all the repetitions are
independent and the probability of failure of each repetition is at most 2/3. In other words, the

probability that we get at least m
4 edges is at least 1−

(
2
3

)k
.

Exercise 2: Ternary Tree (10 Points)

Consider a full, complete ternary tree where each inner node has exactly three child nodes. Note that
since the tree is full and complete, all leaves have the same distance (= height) ` from the root. Let
n be the number of leaves of the tree.
Each leave is given a boolean value. The value of an inner node is defined recursively as the majority
value of its three direct children. The objective is to compute the value of the root. The performance
of an algorithm to solve this problem is measured by the number of values of leaves it reads.

(a) Is there a deterministic algorithm to determine the value of the root, such that for any given
input, the algorithm does not need to read the values of all leaves? Explain your answer carefully.
(3 Points)

(b) Give a recursive, randomized algorithm (analysis in part (c)) that always determines the value of
the root but reads at most a` leaves in expectation for a < 3. (4 Points)

Remark: You can also show that only a q`-fraction of all leaves is read in expectation for q < 1.

(c) Based on the algorithm of (b) give a tight upper bound (as a function of the number of leaves n)
for the expected number of leaves that are read by the algorithm. (3 Points)

Sample Solution

(a) To disprove the existence let us consider an arbitrary deterministic algorithm. We construct an
input instance where it fails: a simple tree of height 1 that consists only of a root and three leaves.
Our algorithm has to process at least two leaves to decide what value the root gets.

Consider the two leaves that the algorithm reads first. These are fixed since the algorithm is
deterministic. We construct our input tree such that the values of these first two leaves varies.
Therefore the algorithm has to read the third leaf to determine the value of the root. Consequently,
it has to read all the leaves of this input and the answer is no.

(b) Let us first outline some crucial facts:

(i) For any node, at least two out of its three children have the same value, since we have three
nodes and two values (pigeonhole principle).

(ii) If we know that two children have equal value we know the value of the node and we do not
have to evaluate the third child.

We can use these facts to design an algorithm that returns the value of a given node N as follows.
If node N is a leaf, we just return its value. Otherwise we randomly pick two children. We
recursively compute the values of those children. If the values are equal, we return this value (ii).
Otherwise we recursively compute the value of the third child and return the definite value.

Remark: We expected only an algorithm with said property, and not an actual computation of a.



(c) Let random variable Xh represent the number of visited leaves, while computing the value of a
node N at height h. The height h of a node is its distance to the leaves. Let E denote the event
that the two randomly picked children of N have different values.

Due to (i) at least two of three children of N have the same value. If we fix two children of same
value, then the probability to randomly pick one of those two out of a total of three is 2

3 . The
probability to pick another of the same value from the two remaining nodes is at least 1

2 (if the
third child also has the same value the probability is 1). Hence P(E) ≤ 1 − 2

3 ·
1
2 = 2

3 . Note that
the inequality becomes an equality if exactly two out of three children of N have the same value.

Our algorithm visits two children of N and with P(E) visits the third one. For h ≥ 2 we obtain
the following recursion for the expected visited number of leaves

E[Xh] = 2 · E[Xh−1] + P(E) · E[Xh−1]

≤ 2 · E[Xh−1] +
2

3
· E[Xh−1] =

8

3
· E[Xh−1].

Again we have equality if we have exactly two children with the same value. In the base case we

have E[X1] ≤ 2 + 2
3 = 8

3 and we conclude that E[Xh] ≤
(
8
3

)h
. Considering the height log3 n of the

root, the expected number of leaves visited by the algorithm is

E[X`] ≤
(

8

3

)`

=

(
8

3

)log3 n

=
(

3log3 ( 8
3)
)log3 n

= 3log3 ( 8
3) log3 n = nlog3 ( 8

3).

The upper bound is tight since we have equality for the above expectation when the algorithm is
given a tree where each node that is not a leaf has exactly two children with the same boolean
value while the third has the other value.

Remark: The expected proportion of visited leaves is at most E[X`]/3` =
(
8
9

)`
(i.e. q = 8

9).


