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Exercise 1: Contraction Algorithm (10 Points)

(a) We adjust the contraction algorithm from the lecture in the following way: Instead of contracting
a uniform random edge, we choose a uniform random pair of remaining nodes in each step and
merge them. That is, as long as there are more than two nodes remaining, we choose two nodes
u 6= v uniformly at random and replace them by a new node w. For all edges {u, x} and {v, x}
we add an edge {w, x} and remove self-loops created at w.

Is this a reasonable approach? Explain your answer. (6 Points)

(b) The edge contraction algorithm has a success probability ≥ 1/
(
n
2

)
. We used properties of this

algorithm to show that there are at most
(
n
2

)
minimum cuts in any graph. The improved (recursive)

min-cut algorithm has a success probability ≥ 1/ log n. Why can’t we use the same argumentation
to show that there are at most log n minimum cuts in any graph (which clearly isn’t true as we
have seen that cycles have

(
n
2

)
minimum cuts). (4 Points)

Sample Solution

(a) This algorithm is not efficient. Let (A,B) be a minimum cut. For the edge contraction algorithm
we know that it outputs (A,B) if and only if it never contracts an edge crossing (A,B) (chapter
7, part V, slide 8). If the there are k crossing edges, we know that there are Ω(k · n) edges in
the graph and hence the probability to choose a crossing edge is O(1/n) (in the first contraction
step). In contrast, for the “node contraction” algorithm, it holds that it outputs (A,B) if it never
contracts a “crossing pair”, i.e., a pair of nodes {a, b} with a ∈ A, b ∈ B, regardless whether there
is an edge between a and b. The total number of node pairs is

(
n
2

)
= Ω(n2), but the number of

crossing pairs can be Ω(n2) as well, leading to a constant probability that a crossing pair is chosen.

To formalize this argument, consider the following graph: Let n be even. There are two cliques
(= graph with an edge between each pair of nodes) of size n/2 and a single edge between these
cliques, i.e., an edge {u, v} such that u is in the one clique and v in the other, and no more edges
between the cliques exist. So there is a unique minimum cut and we show that the probability
that the node contraction algorithm chooses this cut is exponentially small. We only consider the
first n/5 rounds. In these rounds, there are at least 4n/5 nodes in the graph, i.e., there are

(
4n/5
2

)
pair of nodes. In order for the minimum cut to survive, the two chosen nodes must be within the
same clique. Each clique has size at most n/2, i.e., there are at most 2

(
n/2
2

)
pairs for which the

minimum cut would survive. This yields a probability of at most

2
(
n/2
2

)(
4n/5
2

) =
2n2
(
n
2 − 1

)
4n
5

(
4n
5 − 1

) =
5

4

(
n
2 − 1

)(
4n
5 − 1

) =
5n
2 − 5

16n
5 − 4

(∗)
<

5n
2

15n
5

=
5

6
.

(∗): For n > 20 we have n
5 > 4 and hence 16n

5 − 4 > 15n
5 .



It follows that the probability that the minimum cut survives the first n/5 rounds is less than(
5
6

)n/5
= an with a =

(
5
6

)1/5
< 1, i.e., exponentially small.

(b) In the edge contraction algorithm, we showed that for any minimum cut (A,B), the probability
that the algorithm returns (A,B) is ≥ 1/

(
n
2

)
. As for two minimum cuts (A,B) 6= (A′, B′),

the events “the algorithm returns (A,B)” and “the algorithm returns (A′, B′)” are disjoint, the
probability that the algorithm returns some minimum cut is ≥ #mincuts

(n2)
and hence #mincuts

≤
(
n
2

)
.

In the recursive algorithm, we considered a set S of cuts which are returned by different executions
of the edge contraction algorithm and showed that the probability that a specific minimum cut is
in S is ≥ 1/ log n. As for two minimum cuts (A,B) 6= (A′, B′), the events “(A,B) is in S” and
“(A′, B′) is in S” are not necessarily disjoint, we can not draw any conclusion from the sucess
probability to the number of minimum cuts.

Exercise 2: Edge Connectivity (10 Points)

Given a graph G = (V,E) with edge connectivity λ(G) and a parameter ε ∈ (0, 1), we obtain a graph
H = (V, F ) by adding each edge from E independently with probability p to F . Show that for every
constant c > 0 there is a constant d > 0 such that for p ≥ d lnn

ε2λ(G)
, we have λ(H) = (1 ± ε) · p · λ(G)

with probability at least 1− 1
nc .

Hint: Use Chernoff’s bound (Chapter 7, Part IV, page 7) and the Cut Counting theorem (Chapter 7,
Part VIII, page 7) for general α ≥ 1.

Sample Solution

Choose d = 3(c+ 4). We show

1. Pr(λ(H) ≥ (1 + ε) · p · λ(G)) < 1
nc+4 .

We know that there is a cut (A,B) in G of size λ(G). For each crossing edge e of (A,B), let Xe be
the random variable that equals 1 if e ∈ F and 0 otherwise. Let X =

∑
e crossing (A,B)

Xe, i.e., X is the

size of (A,B) in H. We have E[X] = p · λ(G). Chernoff’s bound yields

Pr (X > (1 + ε) · p · λ(G)) ≤ e−
ε2

3
pλ(G) ≤ e−

d
3
lnn =

1

nc+4
.

It follows that the probability that all cuts in H are larger than (1 + ε) · p · λ(G) is less than 1
nc+4 .

2. Pr(λ(H) ≤ (1− ε) · p · λ(G)) < 1
4nc .

Let α ≥ 1 and (A,B) a cut in G of size αλ(G). For each crossing edge e of (A,B), let Xe be the
random variable that equals 1 if e ∈ F and 0 otherwise. Let X =

∑
e crossing (A,B)

Xe, i.e., X is the size

of (A,B) in H. We have E[X] = pαλ(G). Chernoff’s bound yields

Pr (X ≤ (1− ε) · p · λ(G)) ≤ Pr (X ≤ (1− ε) · p · α · λ(G)) ≤ e−
ε2

2
pαλ(G) ≤ e−

dα
2

lnn < e−
dα
3

lnn =
1

n(c+4)α

By the cut counting theorem we know that there are at most n2α cuts of size αλ(G) in G. Hence, the
probability that some cut of size αλ(G) in G has size less than (1− ε) · p · λ(G) in H is at most

n2α

n(c+4)α
=

1

n(c+2)α
≤ 1

nc+2
.

There are at most n2/4 values α for which αλ(G) is the size of a cut in G. Hence, the probability that
some cut has size less than (1− ε) · p · λ(G) in H is at most

n2

4nc+2
=

1

4nc



From 1. and 2. it follows that

Pr(λ(H) ≥ (1 + ε) · p · λ(G) or λ(H) ≤ (1− ε) · p · λ(G)) ≤ 1

nc+4
+

1

4nc
<

1

nc


