Algorithms Theory Sample Solution Exercise Sheet 11

Due: Tuesday, 2nd of February 2021, 4 pm

Exercise 1: Contraction Algorithm

(a) We adjust the contraction algorithm from the lecture in the following way: Instead of contracting a uniform random edge, we choose a uniform random pair of remaining nodes in each step and merge them. That is, as long as there are more than two nodes remaining, we choose two nodes $u \neq v$ uniformly at random and replace them by a new node w. For all edges $\{u, x\}$ and $\{v, x\}$ we add an edge $\{w, x\}$ and remove self-loops created at w.

Is this a reasonable approach? Explain your answer.
(6 Points)
(b) The edge contraction algorithm has a success probability $\geq 1 /\binom{n}{2}$. We used properties of this algorithm to show that there are at most $\binom{n}{2}$ minimum cuts in any graph. The improved (recursive) min-cut algorithm has a success probability $\geq 1 / \log n$. Why can't we use the same argumentation to show that there are at most $\log n$ minimum cuts in any graph (which clearly isn't true as we have seen that cycles have $\binom{n}{2}$ minimum cuts).
(4 Points)

Sample Solution

(a) This algorithm is not efficient. Let (A, B) be a minimum cut. For the edge contraction algorithm we know that it outputs (A, B) if and only if it never contracts an edge crossing (A, B) (chapter 7 , part V, slide 8). If the there are k crossing edges, we know that there are $\Omega(k \cdot n)$ edges in the graph and hence the probability to choose a crossing edge is $O(1 / n)$ (in the first contraction step). In contrast, for the "node contraction" algorithm, it holds that it outputs (A, B) if it never contracts a "crossing pair", i.e., a pair of nodes $\{a, b\}$ with $a \in A, b \in B$, regardless whether there is an edge between a and b. The total number of node pairs is $\binom{n}{2}=\Omega\left(n^{2}\right)$, but the number of crossing pairs can be $\Omega\left(n^{2}\right)$ as well, leading to a constant probability that a crossing pair is chosen.

To formalize this argument, consider the following graph: Let n be even. There are two cliques (= graph with an edge between each pair of nodes) of size $n / 2$ and a single edge between these cliques, i.e., an edge $\{u, v\}$ such that u is in the one clique and v in the other, and no more edges between the cliques exist. So there is a unique minimum cut and we show that the probability that the node contraction algorithm chooses this cut is exponentially small. We only consider the first $n / 5$ rounds. In these rounds, there are at least $4 n / 5$ nodes in the graph, i.e., there are $\binom{4 n / 5}{2}$ pair of nodes. In order for the minimum cut to survive, the two chosen nodes must be within the same clique. Each clique has size at most $n / 2$, i.e., there are at most $2\binom{n / 2}{2}$ pairs for which the minimum cut would survive. This yields a probability of at most

$$
\frac{2\binom{n / 2}{2}}{\binom{4 n / 5}{2}}=\frac{2 \frac{n}{2}\left(\frac{n}{2}-1\right)}{\frac{4 n}{5}\left(\frac{4 n}{5}-1\right)}=\frac{5\left(\frac{n}{2}-1\right)}{4}\left(\frac{4 n}{5}-1\right) \quad \frac{\frac{5 n}{2}-5}{\frac{16 n}{5}-4} \stackrel{(*)}{<} \frac{\frac{5 n}{2}}{\frac{15 n}{5}}=\frac{5}{6} .
$$

(*): For $n>20$ we have $\frac{n}{5}>4$ and hence $\frac{16 n}{5}-4>\frac{15 n}{5}$.

It follows that the probability that the minimum cut survives the first $n / 5$ rounds is less than $\left(\frac{5}{6}\right)^{n / 5}=a^{n}$ with $a=\left(\frac{5}{6}\right)^{1 / 5}<1$, i.e., exponentially small.
(b) In the edge contraction algorithm, we showed that for any minimum cut (A, B), the probability that the algorithm returns (A, B) is $\geq 1 /\binom{n}{2}$. As for two minimum cuts $(A, B) \neq\left(A^{\prime}, B^{\prime}\right)$, the events "the algorithm returns (A, B) " and "the algorithm returns $\left(A^{\prime}, B^{\prime}\right)$ " are disjoint, the probability that the algorithm returns some minimum cut is $\geq \frac{\text { \#mincuts }}{\binom{n}{2}}$ and hence $\#$ mincuts $\leq\binom{ n}{2}$.
In the recursive algorithm, we considered a set S of cuts which are returned by different executions of the edge contraction algorithm and showed that the probability that a specific minimum cut is in S is $\geq 1 / \log n$. As for two minimum cuts $(A, B) \neq\left(A^{\prime}, B^{\prime}\right)$, the events " (A, B) is in $S^{\prime \prime}$ and " $\left(A^{\prime}, B^{\prime}\right)$ is in S " are not necessarily disjoint, we can not draw any conclusion from the sucess probability to the number of minimum cuts.

Exercise 2: Edge Connectivity

Given a graph $G=(V, E)$ with edge connectivity $\lambda(G)$ and a parameter $\varepsilon \in(0,1)$, we obtain a graph $H=(V, F)$ by adding each edge from E independently with probability p to F. Show that for every constant $c>0$ there is a constant $d>0$ such that for $p \geq \frac{d \ln n}{\varepsilon^{2} \lambda(G)}$, we have $\lambda(H)=(1 \pm \varepsilon) \cdot p \cdot \lambda(G)$ with probability at least $1-\frac{1}{n^{c}}$.
Hint: Use Chernoff's bound (Chapter 7, Part IV, page 7) and the Cut Counting theorem (Chapter 7, Part VIII, page 7) for general $\alpha \geq 1$.

Sample Solution

Choose $d=3(c+4)$. We show

1. $\operatorname{Pr}(\lambda(H) \geq(1+\varepsilon) \cdot p \cdot \lambda(G))<\frac{1}{n^{c+4}}$.

We know that there is a cut (A, B) in G of size $\lambda(G)$. For each crossing edge e of (A, B), let X_{e} be the random variable that equals 1 if $e \in F$ and 0 otherwise. Let $X=\sum_{e \text { crossing }(A, B)} X_{e}$, i.e., X is the size of (A, B) in H. We have $E[X]=p \cdot \lambda(G)$. Chernoff's bound yields

$$
\operatorname{Pr}(X>(1+\varepsilon) \cdot p \cdot \lambda(G)) \leq e^{-\frac{\varepsilon^{2}}{3} p \lambda(G)} \leq e^{-\frac{d}{3} \ln n}=\frac{1}{n^{c+4}}
$$

It follows that the probability that all cuts in H are larger than $(1+\varepsilon) \cdot p \cdot \lambda(G)$ is less than $\frac{1}{n^{c+4}}$.
2. $\operatorname{Pr}(\lambda(H) \leq(1-\varepsilon) \cdot p \cdot \lambda(G))<\frac{1}{4 n^{c}}$.

Let $\alpha \geq 1$ and (A, B) a cut in G of size $\alpha \lambda(G)$. For each crossing edge e of (A, B), let X_{e} be the random variable that equals 1 if $e \in F$ and 0 otherwise. Let $X=\sum_{e \text { crossing }(A, B)} X_{e}$, i.e., X is the size of (A, B) in H. We have $E[X]=p \alpha \lambda(G)$. Chernoff's bound yields
$\operatorname{Pr}(X \leq(1-\varepsilon) \cdot p \cdot \lambda(G)) \leq \operatorname{Pr}(X \leq(1-\varepsilon) \cdot p \cdot \alpha \cdot \lambda(G)) \leq e^{-\frac{\varepsilon^{2}}{2} p \alpha \lambda(G)} \leq e^{-\frac{d \alpha}{2} \ln n}<e^{-\frac{d \alpha}{3} \ln n}=\frac{1}{n^{(c+4) \alpha}}$
By the cut counting theorem we know that there are at most $n^{2 \alpha}$ cuts of size $\alpha \lambda(G)$ in G. Hence, the probability that some cut of size $\alpha \lambda(G)$ in G has size less than $(1-\varepsilon) \cdot p \cdot \lambda(G)$ in H is at most

$$
\frac{n^{2 \alpha}}{n^{(c+4) \alpha}}=\frac{1}{n^{(c+2) \alpha}} \leq \frac{1}{n^{c+2}}
$$

There are at most $n^{2} / 4$ values α for which $\alpha \lambda(G)$ is the size of a cut in G. Hence, the probability that some cut has size less than $(1-\varepsilon) \cdot p \cdot \lambda(G)$ in H is at most

$$
\frac{n^{2}}{4 n^{c+2}}=\frac{1}{4 n^{c}}
$$

From 1. and 2. it follows that

$$
\operatorname{Pr}(\lambda(H) \geq(1+\varepsilon) \cdot p \cdot \lambda(G) \text { or } \lambda(H) \leq(1-\varepsilon) \cdot p \cdot \lambda(G)) \leq \frac{1}{n^{c+4}}+\frac{1}{4 n^{c}}<\frac{1}{n^{c}}
$$

