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Exercise 1: Load Balancing (10 Points)

Consider the load balancing problem as introduced in the lecture with m machines M1, . . . ,Mm and
n jobs with processing times t1, . . . , tn > 0. Let L :=

∑n
i=1ti be the total processing time.

(a) Let m = 2. Show how to compute a scheduling whose makespan is a (1 + ε)-approximation of
that of an optimal scheduling in time O(n3/ε). (3 Points)

Hint: Try utilize the PTAS for the Knapsack problem.

(b) Let m be arbitrary. Assume for now that all processing times ti are integer. Show that the load
balancing problem can be solved exactly in time O(nmLm). (4 Points)

Hint: You can use Dynamic Programming.

(c) Use the algorithm from part b) to develop a PTAS for the load balancing problem in case the
number of machines is a constant (i.e., m = O(1)). More specifically, show that one can compute
a (1 + ε)-approximation in time O

((
n
ε

)c)
for some constant c (c can depend on m). (3 Points)

Hint: You can use the same scaling and rounding technique from the PTAS for Knapsack.

Sample Solution

(a) We reduce the 2-machine scheduling problem to an instance of the Knapsack problem. The jobs
1, . . . , n correspond to the items, where each item has weight and value wi = vi = ti. We define
the maximum weight of the Knapsack as W := L/2.

Let S ⊆ {1, . . . , n} be a set of selected items. This corresponds to a solution for the 2-machine
scheduling problem by scheduling all jobs in S on M1 and the rest on M2. By construction, M2

always has more load: v(S) ≤ L − v(S). Therefore the makespan is T (S) = L − v(S). So the
quality of the obtained scheduling depends on the quality of the Knapsack solution S.

If S∗ is an optimal selection of items (i.e., one that maximizes v(S∗), s.t., v(S∗) = w(S∗) ≤ L/2),
then this corresponds to an optimal machine scheduling on M1. This is due to the fact that
maximizing the load of M1 without going over L/2, minimizes the load of M2 and therefore the
optimal makespan is T (S∗) = L− v(S∗).

As computing S∗ is too costly (super-polynomial, unless P = NP ), we run the Knapsack-PTAS
on the instance constructed above, instead. This takes at most the time stated in the exercise.
Let S be the solution from the PTAS. We have the guarantee v(S) ≥ (1− ε)v(S∗). Then

T (S) = L− v(S) ≤ L− (1− ε)v(S∗) = L− v(S∗) + εv(S∗)

≤ L− v(S∗) + ε(L− v(S∗)) = (1 + ε)(L− v(S∗)) = (1 + ε)T (S∗).



(b) As hinted, we construct a solution using dynamic programming. The underlying concept is covered
in prior lectures so we will restrict ourselves to defining the table which we want to fill, what the
recursion and the base cases look like, how long it takes to fill the table and how we extract
solution from it.

Let `1, . . . , `m be upper bounds for the loads of M1, . . . ,Mm. Assume that we have at least n > 1
jobs and m > 1 machines, otherwise the problem is trivial. In that case it is never optimal to
assign all jobs to one machine, thus we require ∀i : 0 ≤ `i < L =

∑m
i=1 `i. Let A[i, `1, . . . , `m] be

the table which we want to fill, which should contain the value 1 if there is a valid assignment of
jobs 1, . . . , i to machines M1, . . . ,Mm such that each machine has load at most `1, . . . , `m, else 0.

The base cases i = 1 are easy to compute. To fill out A[1, `1, . . . , `m] we check if we can assign
the first job to some machine Mj such that ti ≤ `j . This can all be done in time O(m). The cases
i > 1 are traced back to the table entries with one job less, i.e., A[i−1, . . .]. The idea to compute
A[i, `1, . . . , `m] is to check if we can put job i on Machine Mj for each j = 1, . . . ,m and still find
a valid scheduling.

For this we first check if A[i−1, `1, . . . , `j− ti, . . . , `m] = 1 for some j ∈ {1, . . . ,m}. If yes, we
set A[i, `1, . . . , `m] := 1. To catch marginal cases, we assume A[i−1, `1, . . . , `j−ti, . . . , `m] = 0 if
`j−ti < 0 (i.e., we always return 0 when we query a table entry where one dimension is negative). If
none of these conditions apply the required scheduling is impossible and we set A[i, `1, . . . , `m] := 0.
Overall, we have to check m entries to compute A[i, `1, . . . , `m] which takes O(m) timesteps.

Using dynamic programming, each table entry has to be computed at most once. The question is
how many table entries there are. The number of possibilities of the first dimension of the table
A is n. Since 0 ≤ `i < L, the number of combinations for (`1, . . . , `m) is Lm. So the overall the
number of table cells is O(nLm) and given a running time of O(m) for the computation of one
entry, the overall time is O(nmLm).

To get the minimum makespan from the table, one has to compute from the last “hyper-row”
A[n, . . .] all the entries which are 1, and from those we have to choose the entry which has the
smallest makespan. Formally:

makespan = min
`1,...,`m with

A[n,`1,...,`m]=1

max
(
`1, . . . , `m

)
.

Evaluating the n-th “hyper-row” takes O
(
mLm

)
time. If we want to extract a schedule from A,

we first have to find the entry which defines the makespan as described above, and then backtrack
the recursive path that leads to the computation of that entry, which lets us decide where each
job is scheduled. The time required for that is less than computing the table in the first place.

(c) Overview: As suggested by the hint, we repeat the approach used for the PTAS of Knapsck. The
idea is to first scale all processing times appropriately and then round them up to obtain integer
processing times t̂1, . . . , t̂n > 0. Then we can use the procedure from part (b) to solve the integer
instance of the problem. We show that the procedure has polynomial runtime in n

ε (provided
m ∈ O(1)) and that the makespan of the obtained scheduling is at most (1 + ε) times larger than
that of the optimal scheduling.

Detailed Solution: We define the scaled and rounded weights as t̂i :=
⌈
nti
εt

⌉
, where t := maxn

i=1 ti.

We observe that t̂i ≤ nti
εt + 1. Then the total processing time t̂ of the transformed problem is

L̂ :=

n∑
i=1

t̂i ≤
n∑

i=1

(
nti
εt

+ 1

)
= n+

n

ε

n∑
i=1

ti
t
≤ n+

n2

ε
= O(n2/ε)

Now we run the algorithm from part (b) on this problem instance. The runtime is

O
(
nmL̂m

)
= O

(
m · n2m+1/εm

)
= O

(
n2m+1/εm

)
.

So the runtime requirements of this task are fulfilled if we choose c = 2m+ 1 ∈ O(1).



Let S be the schedule we get from this procedure. Note that S is optimal with respect to the t̂i
but not with respect to the ti. Let S∗ be an optimal scheduling with respect to the ti. Let T (S)
and T (S∗) be the makespan of both schedules with respect to the unmodified processing times ti
and let T̂ (S) and T̂ (S∗) be the according values with respect to the modified t̂i.

We define M,M∗ as the machines which have the largest load of T (S), T (S∗) under the schedules

S and S∗ respectively, w.r.t. the processing times ti. Analogously, let M̂, M̂∗ be the machines
that have largest load of T̂ (S), T̂ (S∗) under the schedules S and S∗, respectively, w.r.t. the t̂i.

Let JS′(M
′) ⊆ {1, . . . , n} be the set of jobs scheduled on machine M ′ under some schedule S′. For

brevity, we define the jobs assigned to the above machines under the corresponding schedules as
follows J := JS(M), Ĵ := JS(M̂),K := JS∗(M

∗), K̂ := JS∗(M̂
∗). Then we have

T (S) =
∑
i∈J

ti =
εt

n

∑
i∈J

nti
εt
≤ εt

n

∑
i∈J

⌈nti
εt

⌉
=
εt

n

∑
i∈J

t̂i ≤
εt

n

∑
i∈Ĵ

t̂i M has load less equal as M̂ w.r.t. t̂i

≤ εt

n

∑
i∈K̂

t̂i =
εt

n

∑
i∈K̂

⌈nti
εt

⌉
M̂ has load less equal as M̂∗ w.r.t. t̂i

≤ εt

n

∑
i∈K̂

(nti
εt

+ 1
)

=
∑
i∈K̂

ti +
∑
i∈K̂

εt

n

≤
∑
i∈K

ti +
∑
i∈K̂

εt

n
= T (S∗) +

∑
i∈K̂

εt

n
M̂∗ has load less equal as M∗ w.r.t. ti

≤ T (S∗) + ε
∑n

i=1
t
n ≤ T (S∗) + εt = T (S∗) + εt ≤ (1+ε)T (S∗).

Exercise 2: Minimum Set Cover with Bounded Frequency (10 Points)

Consider a set cover instance with a set of elements X and a family of subsets S ⊆ 2X of X. A set
cover instance (x,S) is said to have frequency f iff every element x ∈ X is contained in at most f of
the sets S ∈ S.

(a) First consider the unweighted version of the set cover problem. Give a polynomial-time algorithm
with approximation ratio at most f for the minimum set cover problem with frequency f .(3 Points)

Hint: The special case where f = 2 is equivalent to the minimum vertex cover problem.

(b) Now we consider the weighted set cover problem, where every set S ∈ S has a weight wS > 0. We
first consider an assignment of prices px ≥ 0 to all elements x ∈ X. We call a price assignment
valid if for every set S ∈ S:

∑
x∈S px ≤ wS . Show that for any valid price assignment px ≥ 0 for

all x ∈ X, it holds that ∑
x∈X

px ≤
∑
S∈C

wS for every set cover C. (2 points)

(c) We say that a valid price assignment px ≥ 0 for x ∈ X is maximal if it is not possible to increase
some price px without violating the validity condition of the price assignment. A maximal price
assignment can be computed by a simple greedy algorithm. Show that a maximal price assignment
can be used to derive a set cover algorithm with approximation ratio at most f . (5 Points)

Hint: Come up with a family of sets C ⊆ S based on a maximal price assignment and show that
it covers X. Then use the property from part b) to show the approximation ratio.

Sample Solution

(a) Intuition: The special case f = 2 equals vertex cover problem where edges are the elements and
the nodes correspond to sets which “contain” their incident edges. In the lecture this was solved



by finding a maximal matching of the edges and then simply adding all the endpoints of the added
edges to the vertex cover. For the f -frequency set cover problem we do something similar.

Approach: We choose a maximal independent set of elements I ⊆ X, that is no two elements
x, y ∈ I “share” a set S, i.e., x /∈ S or y /∈ S for all S ∈ S1 such that no element can be added
anymore without violating this condition (maximality). A simple greedy approach gives such a
maximal I ⊆ X in polynomial time (O(|X| · |S|) suffices).

Then we choose C ⊆ S as all sets which contain at least one element of I. This corresponds to
adding both endpoints of all edges in the matching to the vertex cover. Formally: C := {S ∈ S |
∃x ∈ I : x ∈ S}. We show that C is a set cover. Each element from X is either in I in which
case it is covered by some S ∈ C. Or otherwise, it must be in some set S ∈ C which contains an
element x ∈ I. Because if not we could add x to I without violating the independence, thus I was
not maximal, a contradiction.

Approximation ratio: We generalize the proof for vertex cover from the lecture to the maximal
independent set C ⊆ S to show an approximation ratio of f . Let C∗ ⊆ S be the minimum set
cover. Due to the independence condition, there are no two elements in I that are contained in
the same set S ∈ S. For that reason, any set cover C′ ⊆ S must contain one distinct set for each
x ∈ I in order to cover I. Hence |I| ≤ |C′| and in particular |I| ≤ |C∗|.
But since each element x ∈ I is contained in at most f sets the size of the setcover C which we
computed above is at most |C| ≤ f · |I| (recall that for each x ∈ I we add all of the at most f sets
containing x to C). Overall we have |C| ≤ f · |I| ≤ f · |C∗|.

(b) By definition of a set cover C we have
⋃

S∈C S = X. Hence we can modify the sum as follows.∑
x∈X

px ≤
∑
S∈C

∑
x∈S

px ≤
∑
S∈C

wS .

(c) Let px, x ∈ X be a maximal valid price assignment. There must be some S ∈ S with
∑

x∈S px = wS

(otherwise the price assignment was not maximal). We suspect that these sets must be important,
and define C := {S ∈ S |

∑
x∈S px = wS}. First we prove that this is actually a set cover and

second that it is at most f times heavier than the minimum weight set cover.

For a contradiction, assume that x is not covered, i.e., x /∈
⋃

S∈C S. Then for all S with x ∈ S we
have that

∑
x∈S px < wS by definition of C. That means that we could slightly increase px without

violating the validity of the price assignment. But then the price assignment was not maximal, a
contradiction.

Let C∗ be a minimum weighted set cover. For the approximation ratio we have to again utilize
the fact that each element is contained in at most f sets of S in middle step of the following
computation. Additionally, we use that part (b) holds for any set cover, in particular C∗

∑
S∈C

wS =
∑
S∈C

∑
x∈S

px ≤ f ·
∑
x∈X

px
(b)

≤
∑
S∈C∗

wS

1This corresponds to the matching condition where two edges (=elements) share a node (=set) as endpoint.


