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Exercise 1: Randomized Paging (10 Points)

Consider the following simple randomized algorithm rand for the online paging problem:
If a page fault occurs, choose the page to be evicted uniformly at random.

We want to show that rand is k-competitive against an adaptive adversary.

Let OPT be an optimal offline algorithm. Let d; be the number of pages in rand’s cache (fast memory)
that are not in OPT’s cache, at step i. Define a potential function ®(i) = k-d;. Let a; be the amortized
cost (with respect to @) of the i-th request for rand and let ¢; be the cost of the i-th request for OPT.
Let p be the page requested in the i-th step.

Show that Ela;] < k- ¢; if

a) p is in rand’s cache. (1 Point)
b) p is not in rand’s cache, but it is in OPT’s cache. (2 Points)
¢) p is neither in rand’s cache, nor in OPT’s cache, and OPT evicts an unshared page. (2 Points)
d) p is neither in rand’s cache, nor in OPT’s cache, and OPT evicts a shared page. (8 Points)
Conclude that rand is k-competitive against an adaptive adversary. (2 Points)

Sample Solution

a) The actual cost of rand is 0. If OPT does not evict a page or if it evicts a shared page, the potential
does not change. If OPT evicts an unshared page, d; decreases by 1 and hence the potential decreases
by k. In all cases we have a; < 0 and hence it is E|a;] < 0.

b) The actual cost of rand is 1. We have ¢(i) — ¢(i — 1) = 0 if rand evicts a shared page and

¢(i) — ¢(i — 1) = —k otherwise. As the evicted page is chosen uniformly at random, we have
. . d;
Blg(i) = o(i = 1)] = - (-k) = —di < ~1.

The last inequality holds because p was in OPT’s cache, but not in rand’s cache. It follows E[a;] =

1+ Elp(i) — ¢(i — 1)] = 0.

c¢) The actual cost of both rand and OPT is 1. If rand evicts a shared page, the potential does not
change. Otherwise, d; decreases by 1 and hence the potential decreases by k. In both cases we
have a; < 1 and hence it is Fla;] <1 <k=Fk-¢.



d) The actual cost of both rand and OPT is 1. We have ¢(i) — ¢(i — 1) = 0 if rand evicts the same
page as OPT or an unshared page and ¢(i) — ¢(i — 1) = k otherwise. The probability of the last

event is %. Thus, we obtain

E[gf)(z’)—qﬁ(z’—l)]:¥‘k:k—di—lgk—lzk‘ci—l.

and hence Efa;] =1+ E[¢p(i) — ¢(i — 1)] < k- ¢;.

We have shown that in any case, Ela;] < k- ¢;. Let ¢f®? be the actual cost of the i-th request for
rand. For any sequence I of requests with |I| = n we have

n

E[rand(I)] = E[Z ™Y <E)) ai] =) Elai] <Y k-c;=k-0PT(I).

i=1 =1 i=1

Exercise 2: Maximum Cut (10 Points)

Let G = (V, E) be an unweighted undirected graph. A maximum cut of G is a cut whose size is at
least the size of any other cut in G.

(a) Give a simple randomized algorithm that returns a cut of size at least 1/2 times the size of a
maximum cut in expectation and prove this property. (2 Points)

(b) Prove that the following deterministic algorithm (Algorithm 1) returns a cut of size at least 1/2
times the size of a maximum cut. (8 Points)

Algorithm 1 Deterministic Approximate Maximum Cut

Pick arbitrary nodes vi,v € V
A+ {’Ul}
B « {’Ug}
for v e V\ {v1,v2} do
if dega(v) > degp(v) then > degx (v) is the number of v’s neighbors in X C V.
B + BU{v}
else
A+ AU{v}

Output A and B

(c¢) Let us now consider an online version of the maximum cut problem, where the nodes V' of a graph
G = (V, E) arrive in an online fashion. The algorithm should partition the nodes V' into two sets
A and B such that the cut induced by this partition is as large as possible. Whenever a new
node v € V arrives together with the edges to the already present nodes, an online algorithm has
to assign v to either A or B. Based on the above deterministic algorithm (Alg. 1), describe a
deterministic online maximum cut algorithm with strict competitive ratio at least 1/2. You can
use the fact that Algorithm 1 computes a cut of size at least half the size of a maximum cut.

Hint: An online algorithm for a maximization problem is said to have strict competitive ratio o if
it guarantees that ALG > o« - OPT, where ALG and OPT are the solutions of the online algorithm
and of an optimal offline algorithm, respectively. (2 Points)

(d) Show that no deterministic online algorithm for the online maximum cut problem can have a strict
competitive ratio that is better than 1/2. (8 Points)



Sample Solution

(a)

(b)

Initialize S = (). Each node joins S independently with probability 1/2. For an edge e = {u, v},
the probability that e is between S and V' \ S'is Pr(u € SAv ¢ S)+Pr(u ¢ SAve S)=1/2. So
in expectation, half of the edges are between S and V' \ S.

We distinguish between crossing edges with one endpoint in A and one in B and inner edges with
either both endpoints in A or both in B. We show that the following property is a loop-invariant:
The number of crossing edges is at least the number of inner edges.

This is true before entering the loop the first time (there are no inner edges). In the following
iterations, a node is added to B iff it has more neighbors in A than it has in B and it is added
to A iff it has at least as many neighbors in B as in A. So in either case, the number of crossing
edges that are added is at least the number of inner edges that are added.

When all nodes are processed, the number of crossing edges is at least the number of inner edges,
i.e., at least half of the edges are crossing edges. So the resulting cut has size at least |E|/2 and
|E| is an upper bound for a maximum cut.

Algorithm 1 actually describes an online algorithm. The first node that arrives is assigned to A,
the second node to B and all other nodes are processed as described in the loop. As shown we
obtain ALG> |E|/2 and OPT< |E| and hence the competitive ration is at least 1/2.

Consider a graph with nodes vy, v, ..., v,. Nodes v; and v are adjacent to each other node, more
edges do not exist. The cut ({v1,v2},{vs,...,v,}) has size 2(n — 2) <OPT. Assume ALG is an
online algorithm with competitive ratio r > 1/2 which computes a cut (S,V \ S) for any graph
(V,E). If ALG first receives v; and vg, it must put one in S and the other in V' \ S, because
otherwise we had ALG= 0 and OPT= 1 in case the graph consists only of v; and vy (which an
online algorithm can not know at this point). Any cut with v; € S and vy ¢ S (or vice versa) has

n—oo

size n — 1. Therefore we have ALG/OPT< 2(’;77_12) — 1/2. So for n sufficiently large we have

ALG/OPT< r, contradicting that ALG has competitive ratio r.



