Albert-Ludwigs-Universität, Inst. für Informatik Prof. Dr. Fabian Kuhn

Theoretical Computer Science - Bridging Course Winter Term 2020/21 Exercise Sheet 10

for getting feedback submit electronically by 12:15, Monday, January 25, 2021

Exercise 1: Resolution Calculus

Considering each of the following cases, first convert the knowledge base (KB_i) and the formula (φ_i) to CNFs. Then, by resolution, show that the knowledge base entails the formula.

- (a) $KB_1 := \{(x \land y) \to (z \lor w), y \to x, (z \land y) \to 0, y\}$ $\varphi_1 := w \land y$
- (b) $KB_2 := \{ \neg A \to B, B \to A, A \to (C \land D) \}$ $\varphi_2 := A \land C \land D$

Exercise 2: Implication vs. Entailment

Show that $P \models Q \leftrightarrow (True \models P \rightarrow Q)$

Exercise 3: Understanding First Order Logic (2+2+2 Points)

Consider the following first order logical formulae

$$\varphi_1 := \forall x R(x, x)$$

$$\varphi_2 := \forall x \forall y R(x, y) \to (\exists z R(x, z) \land R(z, y))$$

$$\varphi_3 := \exists x \exists y (\neg R(x, y) \land \neg R(y, x))$$

where x, y are variable symbols and R is a binary predicate. Give an interpretation

- (a) I_1 which is a **model** of $\varphi_1 \wedge \varphi_2$.
- (b) I_2 which is **no model** of $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$.
- (c) I_3 which is a **model** of $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$.

Exercise 4: Truth Value

Determine the truth value of the statement $\exists x \forall y (x \leq y^2)$ if the domain (or universe) for the variables consists of:

- (a) the positive real numbers,
- (b) the integers,
- (c) the nonzero real numbers.

(1+1+1 Points)

(3+3 Points)

(5 Points)