Albert-Ludwigs-Universität, Inst. für Informatik Prof. Dr. Fabian Kuhn Salwa Faour

Theoretical Computer Science - Bridging Course Winter Term 2020/21 Revision Sheet

Exercise 1: The class \mathcal{P}

- 1. Which of the following statements about the class \mathcal{P} are true?
 - \mathcal{P} is the class of all languages that are decidable by deterministic multi-tape Turing machines running in polynomial time.
 - A language L belongs to \mathcal{P} iff there is a constant k and a decider M running in time $O(n^k)$ such that L = L(M).
 - A language L belongs to P iff L is decided by an $O(2^n)$ time DTM.
 - A_{TM} belongs to \mathcal{P} .
- 2. Show that the following language (\cong decision problem) 18-DOMINATINGSET := { $\langle G \rangle \mid G$ has a *dominating set* of size at most 18} is in the class \mathcal{P} .

Remark: A subset of the nodes of a graph G is a *dominating set* if every other node of G is adjacent to some node in the subset.

• Is 18-DOMINATINGSET decidable?

Exercise 2: The class \mathcal{NP} and \mathcal{NPC}

- 1. Is the following true: A language L is decidable by an $O(\log n)$ time deterministic single tape TM, then L belongs to NP.
- 2. Given a set U of n elements ('universe') and a collection $S \subseteq \mathcal{P}(U)$ of subsets of U, a selection $C_1, \ldots, C_k \in S$ of k sets is called a *set cover* of (U, S) of size k if $C_1 \cup \ldots \cup C_k = U$. Show that the problem

SETCOVER:= { $\langle U, S, k \rangle | U$ is a set, $S \subseteq \mathcal{P}(U)$ and there is a set cover of (U, S) of size k}

is NP-complete.

You may use that

DOMINATINGSET = { $\langle G, k \rangle \mid G$ has a dominating set with k nodes}.

is NP-complete.

3. Why can't we solve DOMINATINGSET in polynomial time the same way we solve 18-DOMINATINGSET?

Exercise 3: Regular and Context Free Languages

- Is the language $L := \{ w \in \text{DOMINATINGSET} \mid |w| \le 2021 \}$ regular? Is it decidable?
- Using the pumping lemma for regular languages, show that the following language $L_1 = \{0^m \mid m \text{ is a prime}\}$ is not regular.
- Using the Pumping Lemma for CFL, show also that L_1 is not a CFL.