
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn

Theoretical Computer Science - Bridging Course

Winter 2020/21

Exercise Sheet 8

for getting feedback submit electronically by 12:15, Monday, January 11th, 2021

Exercise 1: The Class P
P is the set of languages which can be decided by an algorithm whose runtime can be bounded by
p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that
the following languages (∼= problems) are in the class P. Since it is typically easy (i.e. feasible in
polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider
well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) Palindrome:= {w ∈ {0, 1}∗ | w is a Palindrome}

(b) List:={〈A, c〉 | A is a finite list of numbers which contains two numbers x,y such that x + y = c}.

(c) 3-Clique := {〈G〉 | G has a clique of size at least 3}

Remark: A clique in a graph G = (V,E) is a set Q ⊆ V such that for all u, v ∈ Q : {u, v} ∈ E.

Exercise 2: The Class NPC
Let L1, L2 be languages (problems) over alphabets Σ1,Σ2. Then L1 ≤p L2 (L1 is polynomially
reducible to L2), iff a function f : Σ∗1 → Σ∗2 exists, that can be calculated in polynomial time and

∀s ∈ Σ∗1 : s ∈ L1 ⇐⇒ f(s) ∈ L2.

Language L is called NP-hard, if all languages L′ ∈ NP are polynomially reducible to L, i.e.

L is NP-hard⇐⇒ ∀L′ ∈ NP : L′ ≤p L.

The reduction relation ’≤p’ is transitive (L1 ≤p L2 and L2 ≤p L3 ⇒ L1 ≤p L3). Therefore, in order
to show that L is NP-hard, it suffices to reduce a known NP-hard problem L̃ to L, i.e. L̃ ≤p L.
Finally a language is called NP-complete (⇔: L ∈ NPC), if

1. L ∈ NP and

2. L is NP-hard.

1



(a) Show Clique :={〈G, k〉 |G has a clique of size at least k }∈NPC.

(b) Show HittingSet := {〈U , S, k〉 | universe U has subset of size at most k that hits all sets in
S ⊆ 2U}∈NPC.1

For both parts, use that VertexCover := {〈G, k〉 | Graph G has a vertex cover of size at most
k} ∈ NPC.

Remark: A hitting set H ⊆ U for a given universe U and a set S = {S1, S2, . . . , Sm} of subsets
Si ⊆ U , fulfills the property H ∩ Si 6= ∅ for 1 ≤ i ≤ m (H ’hits’ at least one element of every Si).
A vertex cover is a subset V ′ ⊆ V of nodes of G = (V,E) such that every edge of G is adjacent to a
node in the subset.

Hint: For the poly. transformation (≤p) you have to describe an algorithm (with poly. run-time!) that
transforms an instance 〈G, k〉 of VertexCover into (a) an instance 〈G′, k′〉 of Clique s.t. a vertex
cover of size ≤ k in G becomes a clique of G′ of size ≥ k′ vice versa(!); and (b) an instance 〈U , S, k〉
of HittingSet, s.t. a vertex cover of size ≤ k in G becomes a hitting set of U of size ≤ k for S and
vice versa(!).

1The power set 2U of some ground set U is the set of all subsets of U . So S ⊆ 2U is a collection of subsets of U .

2


