Albert-Ludwigs-Universitét, Inst. fiir Informatik
Prof. Dr. Fabian Kuhn

Theoretical Computer Science - Bridging Course
Winter 2020/21
Exercise Sheet 8

for getting feedback submit electronically by 12:15, Monday, January 11th, 2021

Exercise 1: The Class P

P is the set of languages which can be decided by an algorithm whose runtime can be bounded by
p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that
the following languages (= problems) are in the class P. Since it is typically easy (i.e. feasible in
polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider
well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) PALINDROME:= {w € {0,1}* | w is a Palindrome}
(b) LisT:={(A,c) | A is a finite list of numbers which contains two numbers z,y such that = + y = c}.

(¢) 3-CLIQUE := {(G) | G has a clique of size at least 3}

Remark: A clique in a graph G = (V, E) is a set Q C V such that for all u,v € Q : {u,v} € E.

Exercise 2: The Class N'PC

Let Li, Ly be languages (problems) over alphabets ¥1,%¥3. Then L; <, Ly (L; is polynomially
reducible to L), iff a function f : ¥ — X3 exists, that can be calculated in polynomial time and

VseX]:s€ L < f(s) € La.
Language L is called N'P-hard, if all languages L' € NP are polynomially reducible to L, i.e.
L is NP-hard <= VL e NP: L' <, L.

The reduction relation '<,’ is transitive (L1 <, Lo and Ly <, L3 = L1 <, 113) Therefqre, in order
to show that L is A'P-hard, it suffices to reduce a known N'P-hard problem L to L, i.e. L <, L.
Finally a language is called N'P-complete (<: L € N'PC), if

1. L e NP and
2. L is N'P-hard.



(a) Show CLIQUE:={(G, k) |G has a clique of size at least k } e N'PC.

(b) Show HITTINGSET := {(U, S, k) | universe U has subset of size at most k that hits all sets in
S c2UyeNPCt

For both parts, use that VERTEXCOVER := {(G,k) | Graph G has a vertex cover of size at most
k} e NPC.

Remark: A hitting set H C U for a given universe U and a set S = {S1,S2,...,Sn} of subsets
S; CU, fulfills the property HNS; # 0 for 1 <i <m (H ’hits’ at least one element of every S;).

A vertex cover is a subset V! CV of nodes of G = (V, E) such that every edge of G is adjacent to a
node in the subset.

Hint: For the poly. transformation (<,) you have to describe an algorithm (with poly. run-time!) that
transforms an instance (G, k) of VERTEXCOVER into (a) an instance (G', k') of CLIQUE s.t. a vertex
cover of size < k in G becomes a clique of G' of size > k' vice versa(!); and (b) an instance (U, S, k)
of HITTINGSET, s.t. a vertex cover of size < k in G becomes a hitting set of U of size < k for S and
vice versa(!).

!The power set 2 of some ground set U is the set of all subsets of U. So S C 2Y is a collection of subsets of .



