Exercise 1: Constructing Turing Machines

Construct a Turing Machine for each of the following languages.

(a) \(L_1 = \{a^i b^j a^i b^j | i, j > 0 \} \)

(b) Language \(L_2 \) of all strings over alphabet \(\{a, b\} \) with the same number of \(a \)'s and \(b \)'s.

Remark: It is sufficient to give a detailed description of the Turing Machines. You do not need to give formal definitions.

Sample Solution

The sketch of the Turing Machines:

(a) The computation first makes sure that a string is in the form of having a non-empty substring \(A \) of only \(a \)'s, followed by a non-empty substring \(B \) of only \(b \)'s, a non-empty substring \(C \) of only \(a \)'s, and finally followed by a non-empty substring \(D \) of only \(b \)'s. Then, it checks whether \(A \) and \(C \) have the same size as follows. It replace an \(a \) in \(A \) with \(X \) and then look for an \(a \) in \(C \) to be replaced by \(Y \). If it can find a corresponding \(a \) in \(C \) for each and every \(a \) in \(A \), and having no \(a \)'s left in the input tape, then it confirms the equality of \(A \) and \(C \). It can thus continue the computation by comparing the length of \(B \) and \(D \). If it also confirms their equality, it accepts the input.

(b) The computation begins by finding the first \(a \) in the input and replacing it with an \(X \). Then the tape head is moved to the beginning of the tape. It then looks for a \(b \) in the input tape to replace it with an \(X \). If for each and every \(a \) in the input tape, it can find a corresponding \(b \), and finally no \(a \) or \(b \) left on the input string, it can confirm the equality of the numbers of \(a \)'s and \(b \)'s.

Exercise 2: Semi-Decidable vs. Recursively Enumerable

Very often people in computer science use the terms *semi-decidable* and *recursively enumerable* equivalently. The following exercise shows in which way they actually are equivalent. We first recall the definition of both terms.

A language \(L \) is *semi-decidable* if there is a Turing machine which accepts every \(w \in L \) and does not accept any \(w \notin L \) (this means the TM can either reject \(w \notin L \) or simply not stop for \(w \notin L \)).

A language is *recursively enumerable* if there is a Turing machine which eventually outputs every word \(w \in L \) and never outputs a word \(w \notin L \).

(a) Show that any recursively enumerable language is semi-decidable.

(b) Show that any semi-decidable language is recursively enumerable.
Sample Solution

(a) Let M_L be the TM which enumerates L. Construct a TM which, on input w, simulates M_L. If M_L outputs w the TM accepts w, otherwise it might run forever.

(b) Let M_L be a TM which semi-decides L. We use a tricky simulation of M_L to construct a TM which recursively enumerates L. We order all words lexicographically w_1, w_2, w_3, \ldots and then we simulate M_L as follows:

1) Simulate one step of M_L on w_1
2) Simulate one (further) step of M_L on w_1 and w_2
3) Simulate one (further) step of M_L on w_1, w_2 and w_3
4) Simulate one (further) step of M_L on w_1, w_2, w_3 and w_4
5) etc.

Exercise 3: Decidability

1. The special halting problem is defined as

$$H_s = \{\langle M \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \}.$$

Show that H_s is undecidable.

Hint: Assume that M is a TM which decides H_s and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

2. Show that $A = \{\langle R, S \rangle \mid R$ and S are regular expressions and $L(R) \subseteq L(S)\}$ is decidable.

3. Show that $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are Turing Machines and } L(M_1) = L(M_2)\}$ is undecidable.

Hint: You may use that $E_{TM} = \{\langle M \rangle \mid M \text{ is a Turing Machine and } L(M) = \emptyset\}$ is undecidable.

Sample Solution

(a) Assume that H_s is decidable. Then there is a TM M which decides it. Now let us define a TM \tilde{M} as follows. TM \tilde{M} on input w uses M to test whether $w \in H_s$. If $w \in H_s$ it enters a non terminating loop, otherwise it accepts w. We now apply \tilde{M} on input $\langle \tilde{M} \rangle$ and construct a contradiction.

$\langle \tilde{M} \rangle \notin H_s$: Then M rejects $\langle \tilde{M} \rangle$. Thus \tilde{M} accepts $\langle \tilde{M} \rangle$ by the definition of \tilde{M}. Thus, $\langle \tilde{M} \rangle \in H_s$, a contradiction.

$\langle \tilde{M} \rangle \in H_s$: Then M accepts $\langle \tilde{M} \rangle$, i.e., \tilde{M} enters a non terminating loop on $\langle \tilde{M} \rangle$ and does not halt on $\langle \tilde{M} \rangle$ which means that $\langle \tilde{M} \rangle \notin H_s$, a contradiction.

(b) Let T be the Turing Machine deciding the language $\{\langle D \rangle \mid D$ is a DFA with $L(D) = \emptyset\}$ (known from the lecture). We have $L(R) \subseteq L(S) \iff L(R) \setminus L(S) = \emptyset$. Thus we construct a decider for A in the following way:

On input $\langle R, S \rangle$ where R, S are regular expression:

- Convert R and S into equivalent DFAs (like in the lecture)
• Construct a DFA D for the regular language $L(R) \setminus L(S) = L(R) \cap \overline{L(S)}$
• Run T on input $\langle D \rangle$. Accept iff T accepts.

(c) Assume we had a TM R that decides EQ_{TM}. We construct a decider for E_{TM}:

On input $\langle M \rangle$ where M is a TM:

• Construct a TM B that rejects all inputs.
• Run R on $\langle M, B \rangle$. Accept iff R accepts.