Exercise 1: Hashing - Collision Resolution with Open Addressing

(a) Let $h(s, j) := h_1(s) - 2j \mod m$ and let $h_1(x) = x + 2 \mod m$. Insert the keys 51, 13, 21, 30, 23, 72 into the hash table of size $m = 7$ using linear probing for collision resolution (the table should show the final state).

(b) Let $h(s, j) := h_1(s) + j \cdot h_2(s) \mod m$ and let $h_1(x) = x \mod m$ and $h_2(x) = 1 + (x \mod (m - 1))$. Insert the keys 28, 59, 47, 13, 39, 69, 12 into the hash table of size $m = 11$ using the double hashing probing technique for collision resolution. The hash table below should show the final state.

Exercise 2: Application of Hashtables

Consider the following algorithm:

```
Algorithm 1 algorithm
1: for $i = 1$ to $n - 1$ do
2:     for $j = 0$ to $i - 1$ do
3:         for $k = 0$ to $n - 1$ do
5:                 return true
6:     return false
```

(a) Describe what `algorithm` computes and analyse its asymptotical runtime.

(b) Describe a different algorithm B for this problem (i.e., $B(A) = \text{algorithm}(A)$ for each input A) which uses hashing and takes time $O(n^2)$.

You may assume that inserting and finding keys in a hash table needs $O(1)$ if $\alpha = O(1)$ (α is the load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time $O(n^2 \log n)$.