Exercise 1: Binary Search Trees I

Consider the following binary search tree.

![Binary Search Tree Diagram]

1. Give all sequences of insert(key) operations that generate the tree.

2. Draw the tree after the following sequence of operations: insert(6), insert(5), remove(3).

Exercise 2: Binary Search Trees II

(a) Describe a function that takes a binary search tree \(B \) and a key \(x \) as input and generates the following output:

- If there is an element \(v \) in \(B \) with \(v.key = x \), return \(v \).
- Otherwise, return the pair \((u, w)\) where \(u \) is the tree element with the next smaller key and \(w \) is the element with the next larger key. It should be \(u = \text{None} \) if \(x \) is smaller than any key in the tree and \(w = \text{None} \) if \(x \) is larger than any key in the tree.

For your description you can use pseudo code or a sufficiently detailed description in English.

Analyze the runtime of your function.

(b) Describe a function which returns the depth of a binary search tree and analyze the runtime.

(c) Describe a function that for a given binary search tree with \(n \) nodes and a given \(k \leq n \) returns a list with the \(k \) smallest keys from the tree. Analyze the runtime.