Exercise 1: Dijkstra’s Algorithm

Execute Dijkstra’s Algorithm on the following weighted, directed graph, starting at node s. Into the table further below, write the distances from each node to s that the algorithm stores in the priority queue after each iteration.

![Graph Diagram]

<table>
<thead>
<tr>
<th>Initialization</th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(s, \cdot)$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

1. Step ($u = s$)
 $\delta(s, \cdot) =$

2. Step ($u = $)
 $\delta(s, \cdot) =$

3. Step ($u = $)
 $\delta(s, \cdot) =$

4. Step ($u = $)
 $\delta(s, \cdot) =$

5. Step ($u = $)
 $\delta(s, \cdot) =$

6. Step ($u = $)
 $\delta(s, \cdot) =$

7. Step ($u = $)
 $\delta(s, \cdot) =$

8. Step ($u = $)
 $\delta(s, \cdot) =$
Exercise 2: Currency Exchange

Consider n currencies w_1, \ldots, w_n. The exchange rates are given in an $n \times n$-matrix A with entries a_{ij} ($i, j \in \{1, \ldots, n\}$). Entry a_{ij} is the exchange rate from w_i to w_j, i.e., for one unit of w_i one gets a_{ij} units of w_j.

Given a currency w_{i_0}, we want to find out whether there is a sequence i_0, i_1, \ldots, i_k such that we make profit if we exchange one unit of w_{i_0} to w_{i_1}, then to w_{i_2} etc. until w_{i_k} and then back to w_{i_0}.

(a) Translate this problem to a graph problem. That is, define a graph and a property which the graph fulfills if and only if there is a sequence of currencies as described above.

(b) Give an algorithm that decides in $O(n^3)$ time steps whether there is a sequence of currencies as described above. Explain the correctness and runtime.

Hint: $\log(ab) = \log a + \log b$.