
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

Algorithms and Data Structures

Winter Term 2021/2022

Exercise Sheet 1

Exercise 1: Bubblesort

The following pseudocode describes the Bubblesort algorithm with input array A of length n.

Algorithm 1 Bubblesort(A[0 . . . n−1])

for i = 0 to n− 2 do
for j = 0 to n− 2 do

if A[j] > A[j+1] then
swap(j, j+1) . operation swap(j, j+1) swaps array entries A[j] and A[j+1]

(a) Assume Bubblesort runs on input A = [24, 9, 15, 11, 4, 21]. Give A after the end of each iteration
of the outer for-loop.

(b) Argue why Bubblesort is correct (i.e., array A is always sorted after the algorithm is finished).

Exercise 2: Counting Sort

The following pseudocode describes the CountingSort algorithm which receives an array A[0 . . . n−1]
as input containing values in [0..k]. Additionally there is an Array counts[0 . . . k] initialized with 0.

Algorithm 2 CountingSort(A, counts) . integer arrays A[0 . . . n−1], counts[0 . . . k]

for i← 0 to n− 1 do
counts[A[i]] ++ . ++ is the increment operation

i← 0
for j ← 0 to k do

for `← 1 to counts[j] do
A[i]← j
i ++

(a) Assume CountingSort runs on input A = [5, 2, 3, 0, 5, 3, 4, 2, 5, 0, 1, 3, 5, 0, 0]. Give A and counts

after the algorithm has terminated.

(b) Argue why CountingSort is correct (i.e., the algorithm has sorted array A after finishing).

Exercise 3: Implementation

(a) Implement one of the above two algorithms in a programming language of your choice (in the
lecture and exercise class we will see/use Python).1

(b) Test your implementation with random inputs as follows. Generate input arrays of length 10, 30,
100, 200, 300, 500, 700, and 1000 respectively, each filled with randomly generated integer values
ranging from 0 to 200. Run the algorithm on each input and check the correctness.

(c) Implement some functionality to measure the elapsed time of the algorithm from start to finish
(e.g., by using the python-module time). Run the algorithm again with the above inputs and note
down the elapsed times. What do you think is the dependency of the running time on n (and k,
in case of the CountingSort algorithm)?

1 Solution: Bubblesort

1.1 State

[9, 15, 11, 4, 21, 24]

[9, 11, 4, 15, 21, 24]

[9, 4, 11, 15, 21, 24]

[4, 9, 11, 15, 21, 24]

[4, 9, 11, 15, 21, 24]

1.2 Correctness

First of all, elements are only swapped, so clearly the final array contains the same elements as in the
original array. Let’s now prove that the elements in the final array are sorted.
Observation: The inner loop “pulls” the current (jth) element further to the back of the array (by
repeated swaps) until either the end of the array is reached or until it finds a bigger element. In the
latter case it will continue doing the same with the bigger element that has been found.
Informal proof idea: After iteration i of the outer loop, the algorithm maintains the condition that
the last i + 1 elements in the array A are the largest in the array in sorted order.2 After the next
iteration i + 1 the algorithm ensures that the current largest of the first n − i − 1 elements in A is
swapped into its correct position (due to the above observation) so that now the last i + 2 elements
in A are the largest elements in sorted order.
If the above argument is too informal for the reader, we follow this up by a more formalized proof.
Formal proof: We argue that after the ith iteration of the outer loop, the sub-array A[n−i−1 . . . n−1]
(i.e., the last i+1 entries of A) is sorted and contains the i+1 largest integers. We prove this invariant
by induction.
Induction base: During the first iteration (i.e., for i = 0), the largest element (or one of the largest
elements in case there are many), will always be swapped to the end of the array. Thus the condition
is obviously true as the single entry A[n−1] is sorted and contains the largest element.
Induction hypothesis: Presume that after the ith iteration, A[n−i−1 . . . n−1] is sorted and contains
the i+1 largest elements.

1As a side-note: In this course we assume that you have some (very) basic programming skills, enabling you to
implement short pseudo codes like the ones given above in a programming language of your choice. Since this course is
more on the theoretical side, we will not ask much more than that in terms of programming skills. If you never attended
some programming-course and/or experience difficulties to implement the above algorithms, please try to catch up using
literature, tutorials and/or contact us.

2Such a condition is usually called a loop invariant. A loop invariant is a condition that holds in every iteration
(usually immediately before or after the code within the loop is executed). A loop invariant often depends on the
number of iterations.

Induction step: We have to show that after the (i+1)th iteration of the outer loop the sub-array
A[n−i−2 . . . n−1] is sorted and contains the i+2 largest elements. Let x be an element in A[0 . . . n−i−2]
that is (i+2)th-largest. This element (or one that has the same value) will be swapped to position
A[n−i−2] during that iteration (but not any further as elements in A[n−i−1 . . . n−1] are at least
as large by the hypothesis). Therefore, and due to the induction hypothesis A[n−i−2] is sorted and
contains the i+2 largest elements.

1.3 Implementation

def swap (A, x , y) :
A[x] , A[y] = A[y] , A[x]

def bubb le sor t (A) :
n = len (A)
for i in range (0 , n−2 + 1) :

for j in range (0 , n−2 + 1) :
i f A[j] > A[j +1] :

swap (A, j , j +1)

1.4 Plot

Python code to measure time:

import random
import time

def measure () :
for n in [1 0 , 30 ,100 , 200 , 300 , 500 , 700 , 1 0 0 0] :

array = [random . rand int (0 ,200) for k in range (0 , n)]
s t a r t t i m e = time . time ()
bubb le sor t (array)
run t ime = (time . time () − s t a r t t i m e) ∗ 1000
print (”%d\ t %.1 f ” % (n , run t ime))

By plotting the data, we get the following:

	0

	20

	40

	60

	80

	100

	120

	140

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

"ex1.data"

If we now plot run time/n as a function of n, we get the following:

	0

	0.02

	0.04

	0.06

	0.08

	0.1

	0.12

	0.14

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

"ex1.data"	using	1:($2/$1)

This suggests that run time/n is linear in n, and thus that run time is quadratic in n.

2 Solution: Counting Sort

2.1 State

A = [0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5], counts = [4, 1, 2, 3, 1, 4].

2.2 Correctness

The algorithm simply counts the number of occurrences of each key j in counts[j]. Subsequently it
writes the keys into the array in ascending order, thus it must obviously be sorted. The (multi-)set of
keys in array A after sorting is also the same as before, since for each key, we write exactly the same
number of keys into the array that we counted before.

2.3 Implementation

def count ing so r t (A, counts) :
n = len (A)
k = len (counts) − 1
for i in range (0 , n−1 + 1) :

counts [A[i]] += 1
i = 0
for j in range (0 , k+1):

for l in range (1 , counts [j]+1) :
A[i] = j
i += 1

2.4 Plot

To better understand the dependency on n and k, we use the following code (abd run it for different
values of k):

import random
import time
import sys

def measure (k) :
for n in range (100 ,30000 , 1 0 0) :

array = [random . rand int (0 , k) for i in range (0 , n)]
counts = [0] ∗ (k+1)
s t a r t t i m e = time . time ()
count ing so r t (array , counts)
run t ime = (time . time () − s t a r t t i m e) ∗ 1000
print (”%d\ t %.1 f ” % (n , run t ime))

measure (int (sys . argv [1]))

By running the following bash script we generate the required data:

f o r i in 100 5000 10000 20000 30000 ; do
python3 ex2 . py $ i > e x 2 $ i . data

done

By plotting the data, we get the following:

	0

	2

	4

	6

	8

	10

	12

	14

	0 	5000 	10000 	15000 	20000 	25000 	30000

"ex2_100.data"
"ex2_5000.data"
"ex2_10000.data"
"ex2_20000.data"
"ex2_30000.data"

We can notice that, for all values of k, the running time appears to be linear in n, but it also seems
that the whole data has a vertical offset that linearly depends on k, and this suggests that the running
time is linear in n + k.

	Solution: Bubblesort
	State
	Correctness
	Implementation
	Plot

	Solution: Counting Sort
	State
	Correctness
	Implementation
	Plot

