University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn

Algorithms and Data Structures Winter Term 2021/2022 Sample Solution Exercise Sheet 5

Exercise 1: Bad Hash Functions

Let m be the size of a hash table and $M \gg m$ the largest possible key of the elements we want to store in the table. The following "hash functions" are poorly chosen. Explain for each function why it is not a suitable hash function.

- (a) $h: x \mapsto \lfloor \frac{x}{m} \rfloor \mod m$
- (b) $h: x \mapsto (2x+1) \mod m$ (*m* even).
- (c) $h: x \mapsto (x \mod m) + \lfloor \frac{m}{x+1} \rfloor$
- (d) For each calculation of the hash value of x one chooses for h(x) a uniform random number from $\{0, \ldots, m-1\}$
- (e) For a set of "good" hash functions h_1, \ldots, h_ℓ with $\ell \in \Theta(\log m)$, we first compute $h_1(x)$, then $h_2(h_1(x))$ etc. until $h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$. That is, the function is $h: k \mapsto h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$

Sample Solution

- (a) Values are not scattered. m subsequent values have the same hash value.
- (b) Only half of the hash table is used. The cells $0, 2, 4, \ldots, m-2$ stay empty.
- (c) h(m-1) = m, but the table has only the positions $0, \ldots, m-1$.
- (d) The hash value of x can not be reproduced.
- (e) The calculation of a single hash value needs $\Omega(\log m)$).

Exercise 2: (No) Families of Universal Hash Functions

Let $S = \{0, \ldots, M-1\}$ and $\mathcal{H}_1 := \{h : x \mapsto a \cdot x^2 \mod m \mid a \in S\}$. Show that H_1 is not *c*-universal for *constant* $c \geq 1$ (that is *c* is fixed and must not depend on *m*).

Sample Solution

(a) For an $x \in S$ let $y = x + i \cdot m \in S$ for some $i \in \mathbb{Z} \setminus \{0\}$. Such a y exists for any x if M > 2m. Let $h \in \mathcal{H}_1$. We obtain

$$h(y) = a \cdot y^2 \mod m$$

$$\equiv a \cdot (x + im)^2 \mod m$$

$$\equiv a \cdot (x^2 + 2xim + (im)^2) \mod m$$

$$\equiv ax^2 \mod m = h(x).$$

It follows that $|\{h \in \mathcal{H}_1 \mid h(x) = h(y)\}| = |\mathcal{H}_1|$, so for m > c we have

$$|\{h \in \mathcal{H}_1 \mid h(x) = h(y)\}| > \frac{c}{m}|\mathcal{H}_1|$$
.

This means that for m > c, \mathcal{H}_1 is not *c*-universal.