Exercise 1: Binary Search Trees I

Consider the following binary search tree.

```
    8
   / 
  3   12
   /   / 
  6  10 5
```

1. Give all sequences of \textit{insert(key)} operations that generate the tree.

2. Draw the tree after the following sequence of operations: \textit{insert(6)}, \textit{insert(5)}, \textit{remove(3)}.

Sample Solution

1. (i) \textit{insert(8),insert(3), insert(12), insert(10)}
 (ii) \textit{insert(8),insert(12), insert(3), insert(10)}
 (iii) \textit{insert(8),insert(12), insert(10), insert(3)}

2. After \textit{insert(6)} and \textit{insert(5)}:

```
    8
   / 
  3   12
   /   / 
  6  10 5
```

After \textit{remove(3)}:
Exercise 2: Binary Search Trees II

(a) Describe a function that takes a binary search tree B and a key x as input and generates the following output:

- If there is an element v in B with $v.key = x$, return v.
- Otherwise, return the pair (u, w) where u is the tree element with the next smaller key and w is the element with the next larger key. It should be $u = None$ if x is smaller than any key in the tree and $w = None$ if x is larger than any key in the tree.

For your description you can use pseudo code or a sufficiently detailed description in English. Analyze the runtime of your function.

(b) Describe a function which returns the depth of a binary search tree and analyze the runtime.

(c) Describe a function that for a given binary search tree with n nodes and a given $k \leq n$ returns a list with the k smallest keys from the tree. Analyze the runtime.

Sample Solution

(a) Algorithm 1 return-closest(x)

```
return-closest$(x)$

$v \leftarrow$ find$(x)$
if $v \neq None$ then
    return $v$
else
    insert$(x)$
    $(p, s) \leftarrow (pred(x), succ(x))$
    delete$(x)$
    return $(p, s)$
```

All subprocedures that we call (find, insert, pred, succ) are known from the lecture and take $O(d)$ with d being the depth of the tree. So the overall runtime is $O(d)$.

(b) We can do a recursive traversal of the tree where we keep track of the current recursion depth. Then a call of depth(r) on the root r of the BST returns its depth.

```
Algorithm 2 depth$(v)$

if $v = None$ then
    return -1  \> depth of a childless node must be 0, hence we define the depth of None as -1
else
    return max(depth$(v.left) + 1$, depth$(v.right) + 1$)
```

The runtime corresponds to the runtime of the traversal of the whole tree which is $O(n)$ as we have just one recursive call for each node and each recursive call costs $O(1)$ (c.f., pre-, in-, post-order traversal algorithms given in the lecture).

As an alternative solution, we can run a BFS which takes $O(n)$. If v is the node visited last by the BFS, do
Algorithm 3 \texttt{traverse-up}(v)

\begin{verbatim}
d ← 0
while v.parent \neq None do
 d ← d + 1
 v ← v.parent
return d
\end{verbatim}

This takes $O(d)$ where d is the depth of the tree. Since $d \leq n$ the overall runtime is $O(n+d) = O(n)$.

(c) Initialize an empty list K. We roughly do the following. Make an in-order traversal of the tree and each time visiting a node, add it to K. Stop if $|K| \geq k$. The following pseudocode formalizes this.

Algorithm 4 \texttt{inorder_variant}(node) \quad \triangleright \text{Assume list } K \text{ is given globally, initially empty}

\begin{verbatim}
if node \neq None then
 inorder_variant(node.left)
if |K| \geq k then
 return
K.append(node.key)
 inorder_variant(node.right)
\end{verbatim}

The runtime is $O(d+k)$ where d is the depth of the tree. We prove this in the following.

Let K be the set of k nodes representing the k smallest keys in the BST. Obviously, the in-order traversal must visit all nodes in K once. In accordance with the lecture a call of \texttt{inorder_variant}(root) adds all keys in ascending order to K.

Let A be the set of nodes in the BST which are not in K but in which a recursive call will be made. Since the recursion is aborted (with the \texttt{return} statement) after reporting k nodes, the set A contains exactly the nodes which are ancestors of a node in K, but are not in K themselves. Since the runtime of a single recursive call (neglecting subcalls) is (1) the total runtime is $O(|A| + |K|)$. By definition we have $|K| = k$, so it remains to determine the size of A. We claim that all nodes in A are on a path from the root to a leaf, that is, $|A| \leq d$. This is the case if there do not exist two nodes in A so that neither is an ancestor of the other.

For a contradiction, suppose that two such nodes u, v exist so that neither u is ancestor of v nor vice versa. Assume (without loss of generality) that $\text{key}(u) \leq \text{key}(v)$. That means u is in the left and v is in the right subtree of some common ancestor a of u and v.

By definition v has a node $w \in K$ in its subtree. Since v is in the right subtree and u is in the left subtree of a, we have $\text{key}(w) \geq \text{key}(u)$ and w has a higher in-order-position. But then we would have $u \in K$ as well, a contradiction to $u \in A$.