Exercise 1: Minimum Spanning Trees

Let \(G = (V, E, w) \) be an undirected, connected, weighted graph with pairwise distinct edge weights.

(a) Show that \(G \) has a unique minimum spanning tree.

(b) Show that the minimum spanning tree \(T' \) of \(G \) is obtained by the following construction:

\[
\text{Start with } T' = \emptyset. \text{ For each cut in } G, \text{ add the lightest cut edge to } T'.
\]

Sample Solution

(a) Assume, for a contradiction, that there are two different MSTs, \(T_1 = (V, E_1) \) and \(T_2 = (V, E_2) \), where \(E_1, E_2 \subseteq E \). Since \(T_1 \) and \(T_2 \) are different, then there are edges that are in \(T_1 \) but not in \(T_2 \), and similarly, there are edges in \(T_2 \) but not in \(T_1 \). Let \(D_1 = E_1 \setminus E_2 \), and let \(D_2 = E_2 \setminus E_1 \). Let \(D = D_1 \cup D_2 \) be the set containing all edges that are in one of the two trees, but not in both. Consider the edge with the smallest weight in \(D \), and let’s call it \(e \) (note that, since \(G \) has pairwise distinct edge weights, then \(e \) is unique). By construction of \(D \), either \(e \in T_1 \) or \(e \in T_2 \). Without loss of generality, assume that \(e \in T_1 \) (and hence \(e \notin T_2 \)). In the following we show that, if we add \(e \) to \(T_2 \) and then remove some other edge, then we get a new tree with smaller total weight, contradicting the fact that \(T_2 \) is an MST.

Let us add the edge \(e \) to \(T_2 \). Since \(e \notin T_2 \), and since \(T_2 \) is a spanning tree, then, by adding \(e \) to \(T_2 \), we must close a cycle. In this cycle, there must be an edge \(e' \neq e \) that is not in \(T_1 \), otherwise \(T_1 \) would contain a cycle and hence it would not even be a tree. Therefore, we have that \(e' \in T_2 \) and \(e' \notin T_1 \), implying that \(e' \in D_2 \). Since edge \(e \) has the minimum weight among all edges in \(D \), then \(w(e) < w(e') \). Starting from \(T_2 \) we create a new tree \(T'_2 \), where we remove \(e' \) from \(T_2 \) and then we add \(e \) to \(T_2 \), that is, we create the tree \(T'_2 = (V, E'_2) \) where \(E'_2 = (E_2 \setminus \{e'\}) \cup \{e\} \). Notice that \(T'_2 \) is still a spanning tree: in fact, by adding \(e \) to \(T_2 \) we created a cycle, and by removing \(e' \) from \(T_2 \) we are breaking that cycle. But now, by construction, we get that \(w(T'_2) < w(T_2) \), but this is in contradiction with the fact that \(T_2 \) is an MST.

(b) Let \(T \) be the MST of \(G \) and \(T' \) the set containing the lightest cut edges.

\[T' \subseteq T: \text{ Let } s \in T', \text{ i.e., } s \text{ is the lightest cut edge of a cut } (S, V \setminus S) \text{ in } G. \text{ Let } e \text{ be the edge of } T \text{ connecting } S \text{ and } V \setminus S. \text{ If } e \neq s, \text{ then } w(s) < w(e) \text{ and the spanning tree } (T \setminus \{e\}) \cup \{s\} \text{ would have a smaller weight than } T, \text{ contradicting that } T \text{ is an MST. Hence we have } e = s \text{ and thus } s \in T. \]

\[T \subset T': \text{ Let } e \in T. \text{ The graph } T \setminus \{e\} \text{ has two connected components which define a cut in } G. \text{ With an exchange argument as above one can show that } e \text{ is the (unique) lightest cut edge of this cut, i.e., we have } e \in T'. \]
Exercise 2: Travelling Salesperson Problem

Let \(p_1, \ldots, p_n \in \mathbb{R}^2 \) be points in the euclidean plane. Point \(p_i \) represents the position of city \(i \). The distance between cities \(i \) and \(j \) is defined as the euclidean distance between the points \(p_i \) and \(p_j \). A tour is a sequence of cities \((i_1, \ldots, i_n) \) such that each city is visited exactly once (formally, it is a permutation of \(\{1, \ldots, n\} \)). The task is to find a tour that minimizes the travelled distance. This problem is probably costly to solve.\(^1\) We therefore aim for a tour that is at most twice as long as a minimal tour.

We can model this as a graph problem, using the graph \(G = (V, E, w) \) with \(V = \{p_1, \ldots, p_n\} \) and \(w(p_i, p_j) := \|p_i - p_j\|_2 \). Hence, \(G \) is undirected and complete and fulfills the triangle inequality, i.e., for any nodes \(x, y, z \) we have \(w(\{x, z\}) \leq w(\{x, y\}) + w(\{y, z\}) \). We aim for a tour \((i_1, \ldots, i_n) \) such that \(w(p_{i_n}, p_{i_1}) + \sum_{j=1}^{n-1} w(p_{i_j}, p_{i_{j+1}}) \) is small.

Let \(G \) be a weighted, undirected, complete graph that fulfills the triangle inequality. Show that the sequence of nodes obtained by a pre-order traversal of a minimum spanning tree (starting at an arbitrary root) is a tour that is at most twice as long as a minimal tour.

Sample Solution

Let \(R = (i_1, \ldots, i_n) \) be a minimal tour and \(w(R) := w(p_{i_n}, p_{i_1}) + \sum_{j=1}^{n-1} w(p_{i_j}, p_{i_{j+1}}) \). Let \(T \) be an MST, \(w(T) := \sum_{e \in T} w(e) \) its weight and \(P_T \) its pre-order sequence of nodes. As the graph is complete, \(P_T \) is also a tour.

We add points to \(P_T \) as follows: If two subsequent nodes \(u \) and \(v \) are not connected in \(T \) by a tree edge, we add between \(u \) and \(v \) all nodes on the shortest path from \(u \) to \(v \) in \(T \) (these are all nodes from \(u \) to the first common ancestor \(w \) and from there to \(v \)). We write \(P'_T \) for the sequence that we obtain (this is formally not a tour as points are visited more than once).

In \(P'_T \), two subsequent nodes are neighbors in \(T \), so we can consider this sequence as a sequence of edges in \(T \). Each edge from \(T \) is contained in \(P'_T \) exactly twice (if you go from the last point back to the root). Thus we have \(w(P'_T) = 2 \sum_{e \in T} w(e) \). The triangle inequality implies \(w(P_T) \leq w(P'_T) \) and hence \(w(P_T) \leq 2 \sum_{e \in T} w(e) \).

The minimal tour \(R \) defines a spanning tree \(T_R \) by taking the edges between subsequent nodes in \(R \). As \(T \) is the minimum spanning tree we have \(w(T) \leq w(T_R) \leq w(T_R) + w(p_{i_n}, p_{i_1}) = w(R) \) and hence \(w(P_T) \leq 2 \cdot w(R) \).

Remark: The above argumentation also works for the post-order traversal. However, if you want the tour to start at a predefined point, it is easiest to use this point as the root of a pre-order traversal.

\(^1\)The Travelling Salesperson Problem is in the class of \(\mathcal{NP} \)-complete problems for which it is assumed that no algorithm with polynomial runtime exists. However, this has not been proven yet.