Algorithm Theory

September 4, 2020, 13:00-15:00

Name:
Matriculation No.:

Signature:

Do not open or turn until told so by the supervisor!

- Write your name and matriculation number on this page and sign the document.
- Your signature confirms that you have answered all exam questions without any help, and that you have notified exam supervision of any interference.
- You are allowed to use a summary of five (single-sided) A4 pages.
- Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
- You may write your answers in English or German language.
- No electronic devices are allowed.
- Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise the one yielding the minimal number of points is considered.
- Detailed steps might help you to get more points in case your final result is incorrect.
- The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain your answer carefully and in sufficient detail.
- The keywords Give..., State... or Describe... indicate that you need to provide an answer solving the task at hand but without proof or deep explanation (except when stated otherwise).
- You may use information given in a Hint without further explanation.
- Read each task thoroughly and make sure you understand what is expected from you.
- Raise your hand if you have a question regarding the formulation of a task.
- Write your name on all sheets!

Task	1	2	3	4	5	Total
Maximum	40	28	15	15	22	120

Points

Task 1: Short Questions

(a) (7 Points) Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How does the given Fibonacci heap look after a decrease-key $(v, 2)$ operation and how does it look after a subsequent delete-min operation?

(b) (6 Points) Let $G=(V, E)$ be a flow network with source s and $\operatorname{sink} t$ and non-negative integer capacities. Let $(S, V \backslash S)$ be a minimum s - t cut with capacity C and e a crossing edge of the cut, i.e., an edge going from S to $V \backslash S$. Describe how to decide in time $O(|E| \cdot C)$ whether or not e is a crossing edge of all minimum $s-t$ cuts.
(c) (6 Points) Consider a game board with r rows and c columns (i.e., an $r \times c$ grid). Imagine that a robot sits on the upper left cell of this board. The robot can only move in two directions; to the neighboring cell on the right or the neighboring cell below. On each cell (i, j), there is a number $n_{(i, j)}$ of coins that the robot picks up when stepping on that cell. Describe an $\mathcal{O}(r \cdot c)$-time algorithm to find a path for the robot from the top-left to the bottom-right cell of the board such that the total number of coins that the robot collects is maximized. Analyze the running time.
(d) (8 Points) Consider the EREW PRAM model. Assume we are given an array A of n positive integers and a positive integer x which is stored in the shared memory. We want to find the number of subarrays of A whose entries sum up to x. That is, we want to find the number of pairs (i, j) with $0 \leq i<j \leq n-1$ such that $\sum_{k=i}^{j} A[k]=x$. Show that there is an algorithm that solves this problem in time $\mathcal{O}\left(\log ^{2} n\right)$ using n processors.
Hint: Solve the problem in the CREW PRAM model first.
(e) (7 Points) A hypergraph is a generalization of an undirected graph in which edges consist of arbitrary subsets of vertices. That is, a hypergraph consists of a set of nodes V and a set of edges $E \subseteq \mathcal{P}(V) \backslash \emptyset$. A hypergraph is called k-uniform if each edge has size k, i.e., contains exactly k nodes. For example, a simple, undirected graph is a 2 -uniform hypergraph.
A matching of a hypergraph is a set of edges which are pairwise disjoint. The aim is to approximate a maximum matching of a 3 -uniform hypergraph.
(i) Provide a 3-uniform hypergraph G and a maximal matching M such that $|M|=\frac{\left|M^{*}\right|}{3}$ where M^{*} is a maximum matching.
(ii) Show that any maximal matching of a 3-uniform hypergraph is a (1/3)-approximate solution of a maximum matching.
(f) (6 Points) Consider a counter C represented by an n-bit binary string which is initially set to 0 . On C we can execute the operations increment and decrement, which increment/decrement C by 1 . The cost of an operation is the number of bits that are flipped.

What can you say about the worst-case amortized cost per operation if you only have increment operations compared to the case where we allow an arbitrary sequence of increment and decrement operations?

Solution Task 1

Task 2: Vertex Coloring

A vertex coloring of a graph is an assignment of colors to the vertices such that adjacent nodes have different colors. Assume we are given a simple, undirected graph $G=(V, E)$ with n vertices such that G can be colored with only 3 colors. We want to show that there is a polynomial-time algorithm to color G with at most $O(\sqrt{n})$ colors.
(a) (4 Points) Show that for every vertex $u \in V$, the graph induced by the neighbors of u is a bipartite graph. That is, $\left(V^{\prime}, E^{\prime}\right)$ is a bipartite graph where

$$
V^{\prime}=\{v \in V \mid\{u, v\} \in E\} \text { and } E^{\prime}=\left\{\{v, w\} \in E \mid v, w \in V^{\prime}\right\}
$$

(b) (6 Points) Show that a bipartite graph with n nodes and m edges can be colored with 2 colors in time $\mathcal{O}(m+n)$.
(c) (7 Points) Describe how to color a part of the nodes with at most $O(\sqrt{n})$ different colors in polynomial time, such that afterwards, there is no uncolored node which has more than \sqrt{n} uncolored neighbors.
Hint: Look for an uncolored node u with more than \sqrt{n} uncolored neighbors and use parts (a) and (b). How often do you need to repeat this process?
(d) (6 Points) Show that every graph with maximum degree Δ can be colored with $\Delta+1$ colors in polynomial time.
(e) (5 Points) Conclude the proof by showing that there is an algorithm to color G with at most $O(\sqrt{n})$ colors in polynomial time.

Hint: You can use parts (c) and (d) also if you did not solve them.

Solution Task 2

Task 3: Online Algorithms

Assume you have 1 Euro and want to exchange it to Dollars during the next k days. More specifically, you must choose a day $i \in\{1, \ldots, k\}$ on which you trade the whole Euro. Exchanging back and forth or partly exchanging the Euro is not allowed. On each day i you learn the exchange rate x_{i} which is valid for that day (i.e., x_{i} is the amount of Dollars you get for 1 Euro). We assume $x_{i} \in[1, a]$, where $a \geq 1$ is a real number which is known. The aim is to get the maximum amount of Dollars for your 1 Euro.
(a) (8 Points) Give a deterministic online algorithm such that ALG $\geq \frac{\mathrm{OPT}}{\sqrt{a}}$, where ALG is the amount of Dollars given by your algorithm and OPT the amount given by an optimal solution. Prove the competitive ratio.
(b) (7 Points) Prove that there is no deterministic algorithm with a better competitive ratio than the one from part (a). That is, for $c<\sqrt{a}$ there is no deterministic algorithm such that ALG $\geq \frac{\mathrm{OPT}}{c}$ in all cases.

Solution Task 3

Task 4: Presentation Scheduling

Assume there are n students s_{1}, \ldots, s_{n}. Each student has finished some individual project and now has to present the results to some professors. There are k professors p_{1}, \ldots, p_{k}. Each professor p_{i} hands in a list $L_{i} \subseteq\left\{s_{1}, \ldots, s_{n}\right\}$ of students for whose projects he/she is an expert. Each professor p_{i} is willing to attend at most a_{i} presentations.

The exam regulations require that at each presentation, x professors that are experts on the topic are present.
(a) (8 Points) Describe a polynomial-time algorithm that computes an assignment of the professors to the student's presentations such that the given constraints are fulfilled, or reports that no such assignment exists.
(b) (7 Points) As there is a shortage of professors, the university loosens the requirements such that among the x professors that need to be present at each presentation, at least y need to be an expert on the topic, for some $y<x$. Describe how to construct a feasible schedule in this case.

Solution Task 4

Task 5: Randomization - Dominating Set in Regular Graphs (22 Points)

Let $G=(V, E)$ be an undirected graph. A set $D \subseteq V$ is called a dominating set if each node in V is either contained in D or adjacent to a node in D.

We consider the following randomized algorithm for d-regular graphs (i.e., graphs in which each node has exactly d neighbors).

```
Algorithm 1 domset \((G)\)
    \(D=\emptyset\)
    Each node joins \(D\) independently with probability \(p:=\min \left\{1, \frac{c \cdot \ln n}{d+1}\right\}\) for some constant \(c>0\)
    Each node that is neither in \(D\) nor has a neighbor in \(D\) joins \(D\)
    return \(D\)
```

For simplicity, in all tasks you may assume that $\frac{c \cdot \ln n}{d+1} \leq 1$, i.e., that $p=\frac{c \cdot \ln n}{d+1}$.
(a) (6 Points) Show that for $c \geq 1$, the expected size of D (after the execution of domset) is at most $\frac{c n \ln n}{d+1}+1$.
Hint: Use the inequality $(1-x) \leq e^{-x}$.
(b) (6 Points) Show that after line 2 of domset, D has size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1-\frac{1}{n}$.

Hint: You might want to use Chernoff's Bound: If X_{1}, \ldots, X_{n} is a sequence of independent 0-1 random variables, $X=\sum X_{i}$ and $\mu=E[X]$, then for any $\delta>0$ we have

$$
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\min \left\{\delta \delta, \delta^{2}\right\}}{3} \mu}
$$

(c) (4 Points) Show that for $c \geq 2$, with probability at least $1-\frac{1}{n}$, no node joins D in line 3 of domset.
(d) (2 Points) Conclude that for $c \geq 2$, domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1-\frac{2}{n}$.
(e) (4 Points) Show that for $c \geq 2$, domset computes an $\mathcal{O}(\ln n)$-approximation of a minimum dominating set (i.e., a dominating set of minimum size) with probability at least $1-\frac{2}{n}$.
Hint: You can use part (d) also if you did not solve it.

Solution Task 5

